Giải dùm em bài chứng minh đẳng thức với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt Thắng = 1+5+...+52012
5 * Thắng = 5 * ( 1 + 5 +...+ 52012 )
5 * Thắng = 5 + 52 +...+ 52013
5 * Thắng - Thắng = ( 5 + 52+...+52013 ) - ( 1 + 5 +...+ 52012 )
4 * Thắng = 52013 -1
Suy ra Thắng = \(\frac{5^{2013}-1}{4}\). Vậy ta có điều phải chứng minh
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}=\frac{x+y+z}{y+z+t}\)
\(\Rightarrow\frac{x^3}{y^3}=\frac{y^3}{z^3}=\frac{z^3}{t^3}=\frac{\left(x+y+z\right)^3}{\left(y+z+t\right)^3}=\left(\frac{x+y+z}{y+z+t}\right)^3=\frac{x}{y}.\frac{y}{z}.\frac{z}{t}=\frac{z}{t}\)
Vậy ..
Ta có: (x + y)2 = (x + y) . (x + y)
= x2 + xy + yx + y2
= x2 + 2xy + y2
=> x2 + 2xy + y2 = (x + y)2
\(\left(x+y\right)^2=x\left(x+y\right)+y\left(x+y\right)=x^2+xy+y^2+xy=x^2+y^2+2xy\)
2X.(3X-5)=10-6X
<=>2X.(3X-5)+6X-10=0
<=>2X.(3X-5)+2.(3X-5)=0
<=>(3X-5).(2X+2)=0
<=>3X-5=0 và 2X+2=0
=> X=
bài này mk bt lm nhưng mk đag trog trạng thái mệt mỏi nên ngại lắm, để lúc nào rảnh mk giúp bn nhé!
\(\left(3x+2\right).\left(2x-1\right)-6x.\left(x-1\right)-7x+4\)
\(=\left(6x^2-3x+4x-2\right)-\left(6x^2-6x\right)-7x+4\)
\(=6x^2+x-2-6x^2+6x-7x+4\)
\(=\left(6x^2-6x^2\right)+\left(x+6x-7x\right)+\left(-2+4\right)\)
\(=2\)
Vậy giá trị biểu thức không phụ thuộc vào biến \(x\)
9.
Gọi H là trung điểm AB \(\Rightarrow A'H\perp\left(ABCD\right)\Rightarrow\widehat{A'CH}=45^0\)
\(CH=\sqrt{BH^2+BC^2}=\sqrt{\left(\dfrac{2a}{2}\right)^2+a^2}=a\sqrt{2}\)
\(\Rightarrow A'H=CH.tan45^0=a\sqrt{2}\)
\(V=A'H.AB.AD=2a^3\sqrt{2}\)
b.
Ta có: \(DD'||AA'\Rightarrow DD'||\left(AA'C\right)\)
\(\Rightarrow d\left(DD';A'C\right)=d\left(DD';\left(AA'C\right)\right)=d\left(D;\left(AA'C\right)\right)\)
Trong mp (ABCD), nối DH cắt AC tại E \(\Rightarrow DH\cap\left(AA'C\right)=E\)
Áp dụng định lý Talet: \(\dfrac{EH}{DE}=\dfrac{AH}{DC}=\dfrac{1}{2}\Rightarrow DE=2EH\)
\(\Rightarrow d\left(D;\left(AA'C\right)\right)=2d\left(H;\left(AA'C\right)\right)\)
Kẻ \(HF\perp AC\Rightarrow AC\perp\left(AHF\right)\)
Trong tam giác vuông AHF, kẻ \(HK\perp A'F\Rightarrow HK\perp\left(AA'C\right)\Rightarrow HK=d\left(H;\left(AA'C\right)\right)\)
Ta có: \(HF=AH.sin\widehat{BAC}=\dfrac{AH.BC}{AC}=\dfrac{AH.BC}{\sqrt{AB^2+AD^2}}=\dfrac{a\sqrt{5}}{5}\)
Áp dụng hệ thức lượng:
\(\dfrac{1}{HK^2}=\dfrac{1}{HF^2}+\dfrac{1}{A'H^2}=\dfrac{11}{2a^2}\Rightarrow HK=\dfrac{a\sqrt{22}}{11}\)
\(\Rightarrow d\left(DD';A'C\right)=2HK=\dfrac{2a\sqrt{22}}{11}\)
(\(\dfrac{\sqrt{a}}{1-\sqrt{a}}\)+ \(\dfrac{\sqrt{a}}{1+\sqrt{a}}\)) : \(\dfrac{2\sqrt{a}}{a-1}\)= -1
VT= \(\dfrac{\sqrt{a}\left(1+\sqrt{a}\right)+\sqrt{a}\left(1-\sqrt{a}\right)}{1-a}\): \(\dfrac{2\sqrt{a}}{a-1}\)
= \(\dfrac{\sqrt{a}+a+\sqrt{a}-a}{1-a}\). \(\dfrac{a-1}{2\sqrt{a}}\)
= \(\dfrac{-2\sqrt{a}}{a-1}\). \(\dfrac{a-1}{2\sqrt{a}}\)= -1 =VP (đpcm)