K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2021

\(2x^2+\left(2m-1\right)x+m-1=0\)

Thay m=2 vào phương trình ta có

\(2x^2+\left(4-1\right)x+2-1=0\)

\(\Leftrightarrow2x^2+3x+1=0\)

\(\Delta=3^2-4.2.1\)

\(=9-8\)

\(=1>0\Rightarrow\sqrt{\Delta}=1\)

\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt

\(x_1=\dfrac{-3-1}{4}=-1\)                          \(x_2=\dfrac{-3+1}{4}=\dfrac{-1}{2}\)

Vậy phương trình có 2 nghiệm là \(x_1=-1;x_2=\dfrac{-1}{2}\)khi m=2

b,\(4x_1^2+2x_1x_2+4x_2^2=1\)

\(\Leftrightarrow4\left(x_1^2+x_2^2\right)+2x_1x_2=1\)

\(\Leftrightarrow4\left(x_1+x_2\right)=1\)

\(\Leftrightarrow4.\left(2m-1\right)^2=1\)

\(\Leftrightarrow2m-1=\dfrac{1}{2}\)

\(\Leftrightarrow2m=\dfrac{3}{2}\)

\(\Leftrightarrow m=\dfrac{3}{4}\)

-Chúc bạn học tốt-

27 tháng 5 2022

Ptr có nghiệm `<=>\Delta' >= 0`

                       `<=>(-m)^2-(-m) >= 0`

                       `<=>m(m+1) >= 0`

                       `<=>` $\left[\begin{matrix} m \le -1\\ m \ge 0\end{matrix}\right.$

 `=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=2m),(x_1.x_2=c/a=-m):}`

Ta có:`x_1 ^2+2mx_2+19(m+1)=0`

`<=>x_1 ^2+(x_1+x_2)x_2+19(m+1)=0`

`<=>x_1 ^2+x_1.x_2+x_2 ^2+19(m+1)=0`

`<=>(x_1+x_2)^2-x_1.x_2+19(m+1)=0`

`<=>(2m)^2-(-m)+19m+19=0`

`<=>4m^2+10m+19=0`

Ptr có:`\Delta'=5^2-4.19=-51 < 0`

   `=>` Ptr vô nghiệm

Vậy ko có gtr `m` t/m yêu cầu đề bài

Δ=(-4)^2-4(2m-2)

=16-8m+8=-8m+24

Để phương trình có hai nghiệm phân biệt thì -8m+24>0

=>m<3

x1+x2=2x1x2

=>2(2m-2)=4

=>2m-2=2

=>2m=4

=>m=2(nhận)

d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)

\(=m^2+2m+1-8m-24\)

\(=m^2-6m-23\)

\(=m^2-6m+9-32\)

\(=\left(m-3\right)^2-32\)

Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)

\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)

Ta có: \(x_1x_2=\dfrac{m+3}{2}\)

\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)

\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)

21 tháng 8 2021

cậu có thể giúp mình cả bài được không,cảm ơn cậu

NV
24 tháng 12 2020

1.

\(\Leftrightarrow6x^2-12x+7-6\sqrt{6x^2-12x+7}-7=0\)

Đặt \(\sqrt{6x^2-12x+7}=t>0\)

\(\Rightarrow t^2-6t-7=0\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=7\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{6x^2-12x+7}=7\)

\(\Leftrightarrow6x^2-12x+7=49\Rightarrow x=1\pm2\sqrt{2}\)

2.

\(\Delta'=\left(m+1\right)^2-m^2-3=2m-2>0\Rightarrow m>1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+3\end{matrix}\right.\)

\(\left(x_1+x_2\right)^2-2x_1x_2=2x_1x_2+8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-8=0\)

\(\Leftrightarrow4\left(m+1\right)^2-4\left(m^2+3\right)-8=0\)

\(\Leftrightarrow2m-4=0\Rightarrow m=2\)

24 tháng 2 2022

a) Thay \(x=0\) vào phương trình ta có:

\(\left(m-1\right).0^2-2m.0+m+1=0.\\ \Leftrightarrow m+1=0.\\ \Leftrightarrow m=-1.\)

b) Ta có: \(\Delta'=m^2-\left(m-1\right)\left(m+1\right).\)

 \(\Delta'=m^2-\left(m^2-1\right).\\ =m^2-m^2+1.\\ =1>0.\)

\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt \(x_1;x_2.\)

Theo Viet: \(\left\{{}\begin{matrix}x_1.x_2=\dfrac{m+1}{m-1}.\\x_1+x_2=\dfrac{2m}{m-1}.\left(1\right)\end{matrix}\right.\)

Theo đề bài: \(x_1.x_2=5.\)

\(\Rightarrow\dfrac{m+1}{m-1}=5.\\ \Leftrightarrow m+1=5m-5.\\ \Leftrightarrow4m-6=0.\\ \Leftrightarrow m=\dfrac{3}{2}.\)

Thay \(m=\dfrac{3}{2}\) vào \(\left(1\right):\)

\(x_1+x_2=\) \(\dfrac{2.\dfrac{3}{2}}{\dfrac{3}{2}-1}=\dfrac{3}{\dfrac{1}{2}}=6.\)