có bao nhiêu số tự nhiên có 6 chữ số khác nhau trong đó luôn có mặt số 1 và số 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: số 2 đứng đầu:
Chọn 2 chữ số từ 6 chữ số còn lại và hoán vị: \(A_6^2=30\) cách
TH2: số 2 không đứng đầu:
Chọn số hàng trăm: có 5 cách (khác 0 và 2)
Chọn 1 chữ số còn lại: 5 cách, hoán vị nó với 2: có \(2!=2\) cách
\(\Rightarrow5.5.2=50\) cách
Tổng cộng: \(30+50=80\) số
1. số tự nhiên có dạng abce ( nhớ gạch trê đầu ( vì đây là số tự nhiên))
* ta có h là :
h= mn
trong đó tập hợp mn là {0,1}
=> có 2 trường hợp xảy ra
(m,n)=(1,0) hoặc (0,1)
* ta có số tự nhiên abhe có tập hợp {h,2,3,4,5,6,7,8,9}
a có 9 cách chọn
b có 8 cách chọn
c có 7 cách chọn
e có 6 cách chọn
vậy có 9*8*7*6=3024 số
*ta phải loại trường hợp h đứng đầu và có dạng 01
trường hợp h đứng đầu và có dạng 01 có số cách chọn là :
a có 1 cách chọn là h
b có 8 cách
c có 7 cách
e có 6 cách
=> có 1*8*7*6=336 số
vậy số tự nhiên theo yêu cầu đề bài có tổng cộng
3024 - 332688 số
0 chắc
Chọn C
Ta xem 3 chữ số 1; 2; 3 đứng cạnh nhau là một phần tử X.
Chọn ra 3 chữ số còn lại có C 4 3 cách chọn.
Xếp phần tử X và 3 chữ số vừa chọn ta có: 4! Cách.
Các chữ số 1;2;3 trong X có thể hoán vị cho nhau có: 3! Cách.
Vậy có tất cả C 4 3 . 4 ! . 3 ! = 576 (số)
Chọn C
Số cách chọn 3 số bất kì từ tập {4;5;6;7} là C 3 4
Do 1, 2, 3 luôn đứng cạnh nhau nên ta xem chúng như một phần tử.
Số các số tự nhiên có sáu chữ số đôi một khác nhau trong đó 1, 2, 3 luôn đứng cạnh nhau là 4!. C 3 4 .3! = 576 số.
Đáp án là C
Số cách chọn 2 số chẵn trong tập hợp 2 ; 4 ; 6 ; 8 là: C 4 2 cách.
Số cách chọn 2 số lẻ trong tập hợp 1 ; 3 ; 5 ; 7 ; 9 là: C 5 2 cách.
Số cách hoán vị 4 chữ số đã chọn lập thành 1 số tự nhiên là: 4! cách.
Vậy có 4 ! . C 4 2 . C 5 2 số tự nhiên thỏa mãn yêu cầu bài toán.