K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

P/S: Hình như đề bị nhầm, phải là \(\widehat{CAK}+\widehat{DBE}=180^0\)chứ

Vẽ dây chung AB của hai đường tròn (O) và (Q) 

Xét (Q) có \(\widehat{CAB}=\widehat{DEB}\)(hai góc nội tiếp cùng chắn cung BC)

Xét (O) có \(\widehat{BAK}=\widehat{BDE}\)(hai góc nội tiếp cùng chắn cung BF)

\(\Delta BDE\)có \(\widehat{BEB}+\widehat{BDE}+\widehat{DBE}=180^0\)

Do đó \(\widehat{CAK}+\widehat{DBE}=\widehat{CAB}+\widehat{BAK}+\widehat{DBE}=\widehat{DEB}+\widehat{BDE}+\widehat{DBE}=180^0\)

Vậy \(\widehat{CAK}+\widehat{DBE}=180^0\)(đpcm)

20 tháng 3 2020

sửa giùm mình dòng 3 sau cái hình là cung BK chứ ko pk BF, nhầm 

12 tháng 6 2018

A B C O M D E H K I P

a) Xét tứ giác ABOC: ^ABO=^ACO=900 (Do AB và AC là 2 tiếp tuyến của (O))

=> Tứ giác ABOC nội tiếp đường tròn dường kính AO (1)

Ta có: DE là dây cung của (O), I là trung điểm DE => OI vuông góc DE => ^OIA=900

Xét tứ giác ABOI: ^ABO=^OIA=900 => Tứ giác ABOI nội tiếp đường tròn đường kính AO (2)

(1) + (2) => Ngũ giác ABOIC nội tiếp đường tròn

Hay 4 điểm B;O;I;C cùng thuộc 1 đường tròn (đpcm).

b) Gọi P là chân đường vuông góc từ D kẻ đến OB

Ta có: Tứ giác BOIC nội tiếp đường tròn => ^ICB=^IOP (Góc ngoài tại đỉnh đối) (3)

Dễ thấy tứ giác DIPO nội tiếp đường tròn đường kính OD

=> ^IOP=^IDP (=^IDK) (4)

(3) + (4) => ^ICB=^IDK (đpcm).

c) ^ICB=^IDK (cmt) => ^ICH=^IDH => Tứ giác DHIC nội tiếp đường tròn

=> ^DIH=^DCH hay ^DIH=^DCB.

Lại có: ^DCB=^DEB (2 góc nội tiếp cùng chắn cung BD) => ^DIH=^DEB

Mà 2 góc trên đồng vị => IH // EB hay IH // EK

Xét tam giác KDE: I là trung điểm DE (Dễ c/m); IH // EK; H thuộc DK

=> H là trung điểm DK (đpcm).

11 tháng 4 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong đường tròn (O’) ta có AC và BC là hai tiếp tuyến cắt nhau tại C

Suy ra: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 (tính chất hai tiếp tuyến cắt nhau)

Mà O’I ⊥ O’A (gt)

CA ⊥ O’A (chứng minh trên)

Suy ra: O’I // CA => Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 (hai góc so le trong)

Suy ra: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hay tam giác CIO’ cân tại I => IC = IO’

Khi đó I nằm trên đường trung trực của O’C

Lại có: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 (tính chất hai tiếp tuyến cắt nhau)

KC ⊥ CA (gt)

O’A ⊥ AC (chứng minh trên)

Suy ra: KC // O’A => Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 (hai góc so le trong)

Suy ra: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hay tam giác CKO’ cân tại K => KC = KO’

Khi đó K nằm trên đường trung trực của O’C

Mặt khác: OC = OO’ (= R)

Suy ra O, I, K nằm trên đường trung trực của O’C

Vậy O, I, K thẳng hàng.

23 tháng 6 2017

Đường tròn

Đường tròn

8 tháng 9 2018

a, HS tự chứng minh

b, Chứng minh ∆NMC:∆NDA và ∆NME:∆NHA

c, Chứng minh ∆ANB có E là trực tâm => AE ⊥ BN mà có AKBN nên có ĐPCM

Chứng minh tứ giác EKBH nội tiếp, từ đó có  A K F ^ = A B M ^

d, Lấy P và G lần lượt là trung điểm của AC và OP

Chứng minh I thuộc đường tròn (G, GA)