\(CMR:\)
\(\frac{12n+1}{30n+2}\)là phân số tối giản với \(n\in N\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯC ( 30n + 1 ; 15n + 2 )
=> 30n + 1 ⋮ d => 2.( 30n + 1 ) ⋮ d
=> 15n + 2 ⋮ d => 4.( 15n + 2 ) ⋮ d
=> [ 2.( 30n + 1 ) - 4.( 15n + 2 ) ] ⋮ d
=> [ ( 60n + 2 ) - ( 60n + 8 ) ] ⋮ d
=> - 6 ⋮ d => d = { - 6 ; - 1 ; 1 ; 6 }
Vì ƯC ( 30n + 1 ; 15n + 2 ) = { - 6 ; - 1 ; 1 ; 6 } nên 30n + 1 / 15n + 2 không là p/s tối giản
Gọi d là ƯCLN(12n+1;30n+2)
Ta có: \(12n+1⋮d\Rightarrow5\left(12n+1\right)=60n+5⋮d\)
\(30n+2⋮d\Rightarrow2\left(30n+2\right)=60n+4⋮d\)
\(\Rightarrow\left(60n+5\right)-60n-4⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1;-1\right\}\)
Mà \(n\in N\Rightarrow d=1\)
Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản ĐPCM
Giải:
Gọi d = UCLN ( 12n + 1; 30n + 2 )
Ta có:
\(12n+1⋮d\)
\(\Rightarrow5\left(12n+1\right)⋮d\)
\(\Rightarrow60n+5⋮d\)
\(30n+2⋮d\)
\(\Rightarrow2\left(30n+2\right)⋮d\)
\(\Rightarrow60n+4⋮d\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow\left(60n-60n\right)+\left(5-4\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\in\left\{\pm1\right\}\)
Vì \(d\in N\) nên d = 1
Vì d = UCLN( 12n + 1; 30n + 2 )= 1 \(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản.
\(\Rightarrowđpcm\)
Gọi d = ( 12n+1 , 30n + 2)
Ta có: 12n+ 1 chia hết cho d 5(12n +1) chia hết cho d 60n +5 chia hết cho d
=> =>
30n+ 2 chia hết cho d 2(30n + 2 ) chia hết cho d 60n ++ 4 chia hết cho d
=> (60n +5 ) - ( 60n + 4 ) chia hết cho d => 1 chia hết ch d => d = 1
Vậy phân số đó tối giản
k mình nha
Gọi d là ƯCLN(12n + 1; 30n + 2) Nên ta có :
12n + 1 ⋮ d và 30n + 2 ⋮ d
=> 5(12n + 1) ⋮ d và 2(30n + 2) ⋮ d
=> 60n + 5 ⋮ d và 60n + 4 ⋮ d
=> (60n + 5) - (60n + 4) ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN(12n + 1; 30n + 2) = 1 nên (12n + 1)/(30n + 2) tối giản ( đpcm )
Gọi d là ƯCLN của 12n + 1 và 30n + 2
12n + 1 chia hết cho d ; 30n + 2 chia hết cho d
=> 5 ( 12n + 1 ) chia hết cho d ; 2 ( 30n + 2 ) chia hết cho d
=> 60n + 5 chia hết cho d ; 60n + 4 chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> Đpcm
Đặt \(\left(12n+1;30n+2\right)=d\)\(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5.\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow1⋮d\)\(\Rightarrow d=1\)
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
Hướng dẫn: Đặt (tử, mẫu)=d
Phương pháp: Tìm được d = 1.
Cách làm: Nhân tử với a, nhân mẫu với b (a, b là số nguyên) sao cho khi trừ đi 2 kết quả mới triệt tiêu được 2 biểu thức chứa n.
Cuối cùng sẽ tìm được 1 là bội của b => d=1
Còn lại cậu tự làm nhé!
Gọi d là ƯCLN(12n+1, 30n+2)
=> 12n+1 chia hết cho d, 30n+2 chia hết cho d
=> 5(12n+1) chia hết cho d, 2(30n+2) chia hết cho d
=> 5(12n+1) - 2(30n+2) chia hết cho d
=> 60n + 5 - 60n - 4 = 1 chia hết cho d
=> d = 1
Vậy phân số trên tối giản.
bỏ n đi ta có 12+1/30+2=12/30+1/2=2/5+1/2=9/10
vay 9/10 la phan so toi gian
gọi d thuộc ƯC(12n+1,30n+2)
=>\(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\Rightarrow1⋮d}\)\(⋮d\)=>d=-1;1
=>\(\frac{12n+1}{30n+2}\)là p/số tối giản
Gọi d là ƯCLN của 12n + 1 và 30n + 2
Khi đó : 12n + 1 chia hết cho d , 30n + 2 chia hết cho d
<=> 5.(12n + 1) chia hết cho d , 2(30n + 2) chia hết cho d
=> 60n + 5 chia hết cho d , 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản
Gọi d là ƯCLN(12n + 1, 30n + 2), d ∈ N*
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(12n+1,30n+2\right)=1\)
\(\Rightarrow\) \(\frac{12n+1}{30n+2}\) là phân số tối giản.
Gọi d là ƯCLN(12n+1, 30n+2)
\(\Rightarrow\hept{\begin{cases}12n+1\\30n+2\end{cases}}\)chia hết cho d\(\Rightarrow\hept{\begin{cases}5\left(12n+1\right)\\2\left(30n+2\right)\end{cases}}\)Chia hết cho d\(\Rightarrow\hept{\begin{cases}60n+5\\60n+4\end{cases}}\)chia hết cho d
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)\) chia hết cho d
\(\Rightarrow60n+5-60n-4\)
\(\Rightarrow\left(60n-60n\right)+\left(5-4\right)\)
\(\Rightarrow1\)chia hết cho d
\(\Rightarrow d=1\)
Vậy với mọi n\(\in N\)thì \(\frac{12n+1}{30n+2}\)là phân số tối giản