Tìm số nguyên n thỏa mãn 2n+1 chia hết cho n-2.
BẠN NÀO GHI CÁCH LÀM ĐÚNG VÀ ĐẦY ĐỦ MÌNH TÍCH CHO !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{199...9}{99...95}=\frac{199...9:199...9}{99...5:99...5}=\frac{1}{5}\)
72.(28 - 49) + 28.(-49 - 72)
= 72.28 - 72.49 + 28.(-49) - 28.72
= (72.28 - 28.72) - [72.49 - 28.(-49)
= 0 - [(-72)(-49) - 28.(-49)]
= 0 - [(-49).(-72 - 28)]
= 0 - [(-49).(-100)]
= 0 - 4900
= -4900
72.(28-49)+28.(-49-72)=72.28-72.49+28.(-49)-28.72
=72.28-28.72+28.(-49)-(-72).49
=72.28-28.72+28.(-49)-(-49).72
=72.(28-28)+(-49).(28+72)
=0+(-49).100
=-4900
A. Số lượng số hạng là:
\(\left(2020-5\right):5+1=404\) (số hạng)
Tổng dãy số là:
\(\left(2020+5\right)\cdot404:2=409050\)
b) 6 chia hết cho n + 2
⇒ n + 2 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
⇒ n ∈ {-1; -3; 0; -4; 1; -5; 4; -8}
Mà n là số tự nhiên
⇒ n ∈ {0; 1; 4}
\(n^2+5⋮n+1\)
\(\Leftrightarrow n^2-1+6⋮n+1\)
\(\Leftrightarrow\left(n-1\right)\left(n+1\right)+6⋮n+1\)
\(\Rightarrow6⋮n+1\) \(\Rightarrow\) \(n+1\) thuộc ước của 6
=> Ư(6) = { - 6; - 3; - 2; - 1; 1; 2; 3; 6 }
=> n + 1 = { - 6; - 3; - 2; - 1; 1; 2; 3; 6 }
=> n = { - 7; - 4; - 3; - 2; 0; 1; 2; 5 }
Bài 2 :
a ) Gọi ƯCLN của 3n + 4 và 2n + 3 là d .
Ta có : 2n + 3 chia hết cho d .
3n + 4 chia hết cho d .
\(\Rightarrow\) 2n . 3 + 3 . 3 chia hết cho d .
3n . 2 + 4 . 2 chia hết cho d .
\(\Rightarrow\) 6n + 9 chia hết cho d .
6n + 8 chia hết cho d .
\(\Rightarrow\) ( 6n + 9 ) - ( 6n + 8 ) chia hết cho d .
\(\Rightarrow\) 1 chia hết cho d .
\(\Rightarrow\) d = 1
b)Gọi ƯCLN( 2n+5, 4n+9) là d
Ta có: 2n + 5 \(⋮\)d
4n + 9 \(⋮\)d
\(\Rightarrow\)2n + 5 . 2 \(⋮\)d
4n + 9 . 1 \(⋮\)d
\(\Rightarrow\)4n + 10 \(⋮\)d
4n + 9 \(⋮\) d
\(\Rightarrow\left(4n+10\right)-\left(4n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy 2n + 5 và 4n + 9 nguyên tố cùng nhau.
Ta có:
A,3n +7 chia hết cho n ( đề bài)
Lại có: 3n chia hết cho n vì n nhân bất cứ số nào cũng chia hết cho n.(1)
Suy ra 7 chia hết cho n. Mà 7 chỉ chia hết cho 7 nên 3n+7 chia hết cho 7. (2)
Vậy ta có 3n +7 chia hết cho n.
Ta có:
B,4n chia hết cho 2n vì bất cứ số nào chia hết cho 4 cũng chia hết cho 2.
Mà 9 không chia hết cho 2n nên không tồn tại số tự nhiên n.
Phần c làm tương tự như phần b.
Phần d tớ chịu
C, 6n chia hết cho 3n vì bất cứ số nào chia hết cho 6 cũng chia hết cho 3.
Mà 11 không chia hết cho 3n nên không tồn tại số tự nhiên n
D, Mình không biết trình bày chỉ biết kết quả là 2 thui mong bạn thông cảm!
Mình trả lời hết rồi nhé!
bài 1:
Mẫu số của phân số đó là : 30 : (23 - 17) x 23 =115
Tử số của phân số đó là : 115 - 30 = 85
=> Phân số cần tìm là : \(\frac{85}{115}\)
Bài 2:
a) với mọi n
b) \(A=\frac{8n+21}{2n+6}=\frac{8n+24-3}{2n+6}=\frac{4.\left(2n+6\right)-3}{2n+6}=\frac{4\left(2n+6\right)}{2n+6}-\frac{3}{2n+6}\) = \(4-\frac{3}{2n+6}\)
Để A thuộc Z thì \(\frac{3}{2n+6}\in Z\Rightarrow3⋮2n+6\) \(\Rightarrow2n+6\) \(\inƯ\left(3\right)\) \(=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-\frac{9}{2};-\frac{7}{2};-\frac{5}{2};-\frac{3}{2}\right\}\)
mà n \(\in Z\Rightarrow n\in\) rỗng.
Ta có : \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\) (do \(x+y+z\ne0\))
\(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)
\(\Leftrightarrow x=y=z\)
Thay \(x=y=z\) vào \(N=\frac{x^{123}.y^{456}}{z^{579}}\), ta có :
\(N=\frac{x^{123}.x^{456}}{x^{579}}\)
\(\Leftrightarrow\frac{x^{579}}{x^{579}}=1\)
Vậy N = 1
Ta có:2n+1=2(n-2)+5
Vì 2(n-2) chia hết cho n-2
=>5 chia hết cho n-2=>n-2 thuộc ước của 5
Ta có bảng giá trị:
(Đến đây dễ rồi cậu tự tính nhé)
2n+1=2n-4+3=2(n-2)+3
Nhận thấy; 2(n-2) chia hết cho n-2 với mọi n
=> Để 2n+1 chia hết cho n-2 thì 3 phải chia hết cho n-2 => n-2=(-3,-1,1,3)