Tìm x,y thuộc Z
a,x/2=3/y
b,2/x=y/18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\Leftrightarrow x^2+3xy+\dfrac{9y^2}{4}=-\dfrac{3y^2}{4}+3y\)
\(\Leftrightarrow-\dfrac{3y^2}{4}+3y=\left(x+\dfrac{3y}{2}\right)^2\ge0\)
\(\Rightarrow-\dfrac{3y^2}{4}+3y\ge0\)
\(\Rightarrow3-\dfrac{3}{4}\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(y-2\right)^2\le4\)
\(\Rightarrow-2\le y-2\le2\)
\(\Rightarrow0\le y\le4\)
\(\Rightarrow y=\left\{0;1;2;3;4\right\}\)
Lần lượt thế vào pt ban đầu:
Với \(y=0\Rightarrow x^2=0\Rightarrow x=0\)
Với \(y=1\Rightarrow x^2+3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
Với \(y=2\Rightarrow x^2+6x+6=0\) ko có nghiệm nguyên ((loại)
Với \(y=3\Rightarrow x^2+9x+18=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=-6\end{matrix}\right.\)
Với \(y=4\Rightarrow x^2+12x+36=0\Rightarrow x=-6\)
b. Kiểm tra lại đề, đề bài đúng như thế này thì không giải được (có vô số nghiệm)
a) 15/5 < 18/5 < 20/5
3 < 18/5 < 4
Vậy x = 3; y = 4
b) 28/7 > 23/7 > 21/7
4 > 23/7 > 3
Vậy x = 4; y = 3
\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)
Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương
\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)
Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm
\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)
Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm
2b,
Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp
Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt
vô đây đọc nhé
a) Ta có:
\(\frac{x}{2}=\frac{3}{y}\)
\(\Rightarrow xy=2.3\)
\(\Rightarrow xy=6\)
Đến đây tự làm tiếp
b) Ta có:
\(\frac{2}{x}=\frac{y}{18}\)
\(\Rightarrow xy=2.18\)
\(\Rightarrow xy=36\)
Đến đây tự làm tiếp
a,x/2=3/y
=> 2/2 = 3/3 = 1
=> x = 2 ; y = 3
b,2/x=y/18
=> 2/2 = 18/18
=> x = 2 ; y = 18
Vậy :...