cho a,b,c>0 và thỏa mãn a+b+c=1. CMR:
a^2+b^2+c^2+2\( { \sqrt{3abc}}\)<=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\); \(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)
\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)
\(1.\)
Theo đề ra, ta có:
\(ax+by=c\)
\(bx+cy=a\Leftrightarrow ax+by+bx+cy+cx+ay=c+a+b\)
\(cx+by=b\)
\(\Leftrightarrow x\left(a+b+c\right)+y\left(a+b+c\right)=a+b+c\)
\(\Leftrightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
Ta có: \(x,y\)thỏa mãn \(\Rightarrow a+b+c=0\Rightarrow a+b=\left(-c\right)\)
Khi đó ta có:
\(a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)\(\left(đpcm\right)\)
Chứng minh:
\(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)
\(\Leftrightarrow2\left(\sqrt{b+1}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)
\(\Leftrightarrow\frac{2}{\sqrt{b+1}+\sqrt{b}}< \frac{1}{\sqrt{b}}\)
\(\Leftrightarrow2\sqrt{b}< \sqrt{b+1}+\sqrt{b}\)
\(\Leftrightarrow\sqrt{b}< \sqrt{b+1}\)(đúng)
Cái còn lại tương tự
Giải thử ạ,sai bỏ qua ạ:
gt ->\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
\(\sqrt{1+a^2}=\sqrt{\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+a^2}=\sqrt{\frac{1}{4}}.\sqrt{4\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a^2}\right)}\)
\(\le\frac{4+\frac{4}{a^2}}{4}=1+\frac{1}{a^2}\)
Tương tự và cộng theo vế: \(VT\le2+\frac{1}{a^2}+\frac{1}{b^2}-\sqrt{1+c^2}\)
Ta sẽ c/m: \(\left(\frac{1}{a^2}+\frac{1}{b^2}-\sqrt{1+c^2}\right)< -1\).Tới đây em bí -_-"
2/
Ta có \(\sqrt{2}.\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
Bạn chứng minh bằng biến đổi tương đương
1/ \(ab+bc+ac=3abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Ta có \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3}{2}\)
Vậy min P = 3/2 tại a = b = c = 1
Áp dụng bđt (x+y+z)^2 >= xy+yz+zx với x,y,z > 0 ta có:
(ab+bc+ca)^2 >= 3.(ab.bc+bc.ca+ca.ab) = 3abc.(a+b+c) = 3abc ( vì a+b+c = 1 )
=> a^2+b^2+c^2+2\(\sqrt{3abc}\)< = a^2+b^2+c^2+2\(\sqrt{\left(ab+bc+ca\right)^2}\)= a^2+b^2+c^2+2(ab+bc+ca) = (a+b+c)^2 = 1
Dấu "=" xảy ra <=> a=b=c=1/3
Vậy GTNN của a^2+b^2+c^2+2\(\sqrt{3abc}\)= 1 <=> a=b=c=1/3
Tk mk nha