K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 7

Lời giải:

$AD$ là đường trung tuyến ứng với cạnh huyền $BC$

$\Rightarrow AD=\frac{BC}{2}$

Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=\sqrt{18^2+24^2}=30$ (cm)

$\Rightarrow AD=30:2=15$ (cm)

AH
Akai Haruma
Giáo viên
6 tháng 7

Hình vẽ:

a: Xét ΔABH vuông tại H và ΔDAK vuông tại K có

AB=DA

góc ABH=góc DAK

=>ΔABH=ΔDAK

b: ΔABH=ΔDAK

=>BH=AK

mà AK<AD

nên BH<AD

21 tháng 12 2016

A B C H D K

27 tháng 12 2017

A B C D H K 1 2

a) Xét \(\Delta ADB\)và \(\Delta ADC\)có :

AD ( cạnh chung )

\(\widehat{A_1}=\widehat{A_2}\)( vì AD là tia phân giác )

AB = AC ( gt )

suy ra \(\Delta ADB\)\(\Delta ADC\)( c.g.c )

b) \(\Rightarrow\widehat{ADB}=\widehat{ADC}\)( 2 góc tương ứng )                         ( theo câu a )

Mà \(\widehat{ADB}+\widehat{ADC}=180^o\)

\(\Rightarrow\widehat{ADB}=\widehat{ADC}=\frac{180^o}{2}=90^o\)

\(\Rightarrow AD\perp BC\)

c) vì \(\Delta ADB\)\(\Delta ADC\)( theo câu a )

\(\Rightarrow BD=CD\)( 2 cạnh tương ứng )

\(\Rightarrow\widehat{ABD}=\widehat{ACD}\)( 2 góc tương ứng )

Mà \(\widehat{ABD}+\widehat{BDH}=90^o\)\(\widehat{ACD}+\widehat{CDK}=90^o\)

\(\Rightarrow\widehat{BDH}=\widehat{CDK}\)

Xét \(\Delta HBD\)và \(\Delta KCD\)có :

\(\widehat{BDH}=\widehat{CDK}\)( cmt )

BD = CD ( cmt )

\(\widehat{ABD}=\widehat{ACD}\)( cmt )

suy ra \(\Delta HBD\)\(\Delta KCD\)( g.c.g )

\(\Rightarrow DH=DK\)( 2 cạnh tương ứng )

a: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là phân giác

b: Xét ΔHBD vuông tại H và ΔKCD vuông tại K có

BD=CD

\(\widehat{B}=\widehat{C}\)

Do đó: ΔHBD=ΔKCD