Cho tam giác ABC vuông góc tại A, AB=18cm, AC=24cm. Kẻ trung tuyến AD (D thuộc BC) kẻ DK vuông góc AB; DH vuông góc AC. Tính AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔDAK vuông tại K có
AB=DA
góc ABH=góc DAK
=>ΔABH=ΔDAK
b: ΔABH=ΔDAK
=>BH=AK
mà AK<AD
nên BH<AD
a) Xét \(\Delta ADB\)và \(\Delta ADC\)có :
AD ( cạnh chung )
\(\widehat{A_1}=\widehat{A_2}\)( vì AD là tia phân giác )
AB = AC ( gt )
suy ra \(\Delta ADB\)= \(\Delta ADC\)( c.g.c )
b) \(\Rightarrow\widehat{ADB}=\widehat{ADC}\)( 2 góc tương ứng ) ( theo câu a )
Mà \(\widehat{ADB}+\widehat{ADC}=180^o\)
\(\Rightarrow\widehat{ADB}=\widehat{ADC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AD\perp BC\)
c) vì \(\Delta ADB\)= \(\Delta ADC\)( theo câu a )
\(\Rightarrow BD=CD\)( 2 cạnh tương ứng )
\(\Rightarrow\widehat{ABD}=\widehat{ACD}\)( 2 góc tương ứng )
Mà \(\widehat{ABD}+\widehat{BDH}=90^o\); \(\widehat{ACD}+\widehat{CDK}=90^o\)
\(\Rightarrow\widehat{BDH}=\widehat{CDK}\)
Xét \(\Delta HBD\)và \(\Delta KCD\)có :
\(\widehat{BDH}=\widehat{CDK}\)( cmt )
BD = CD ( cmt )
\(\widehat{ABD}=\widehat{ACD}\)( cmt )
suy ra \(\Delta HBD\)= \(\Delta KCD\)( g.c.g )
\(\Rightarrow DH=DK\)( 2 cạnh tương ứng )
a: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là phân giác
b: Xét ΔHBD vuông tại H và ΔKCD vuông tại K có
BD=CD
\(\widehat{B}=\widehat{C}\)
Do đó: ΔHBD=ΔKCD
Lời giải:
$AD$ là đường trung tuyến ứng với cạnh huyền $BC$
$\Rightarrow AD=\frac{BC}{2}$
Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=\sqrt{18^2+24^2}=30$ (cm)
$\Rightarrow AD=30:2=15$ (cm)
Hình vẽ: