K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2018

a) vì I và E là hình chiếu => góc MIA= góc MKA=90 đô.Rui cm tam giác DIA =tam giác MIA(c-g-c).

b)tam giác MKC= tam giác CKE(c-g-c)

c)tam giác DIA=tam giác MIA> góc DAI= góc MAI=> góc DAI+MAK=90 độ( vì góc IAM+góc MAK=90 độ) tương tự Cm góc EAK+ óc MAI=90 độ  Nên góc DAI+IAM+MAK+KAE= 180 độ<=> DAE thẳng hàng

d)CM BD//AM rùi CM AM//CE<=> BD//CE

a: Xét ΔAMD có

AI vừa là đường cao, vừa là trung tuyến

=>ΔAMD cân tại A

=>AB là phân giác của góc MAD(1) và AM=AD

Xét ΔAME có

AC vừa là đường cao, vừa là trung tuyến

=>ΔAME cân tại A

=>AC là phân giác của góc MAE(2); AM=AE

=>AE=AD
b: Từ (1), (2) suy ra góc DAE=2*90=180 độ

=>D,A,E thẳng hàng

22 tháng 8 2023

(a) \(I,M\) là trung điểm của \(AB,BC\Rightarrow IM\) là đường trung bình của \(\Delta ABC\Rightarrow\left\{{}\begin{matrix}IM\left|\right|AC\Leftrightarrow MD\left|\right|AC\left(1\right)\\IM=\dfrac{1}{2}AC\end{matrix}\right.\)

Lại có: \(IM=ID\Rightarrow MD=2IM=2\cdot\dfrac{1}{2}AC=AC\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow ADMC\) là hình bình hành (điều phải chứng minh).

 

(b) \(\left\{{}\begin{matrix}MI\left|\right|AC\left(cmt\right)\\AC\perp AB\left(gt\right)\end{matrix}\right.\Rightarrow MI\perp AB\Rightarrow\hat{AIM}=90^o\left(3\right)\).

\(M,K\) là trung điểm của \(BC,AC\Rightarrow MK\) là đường trung bình của \(\Delta ABC\Rightarrow MK\left|\right|AB\), mà \(AB\perp AC\left(gt\right)\Rightarrow MK\perp AC\Rightarrow\hat{AKM}=90^o\left(4\right)\).

Ta cũng có: \(\hat{A}=90^o\left(5\right)\).

Từ \(\left(3\right),\left(4\right),\left(5\right)\Rightarrow AIMK\) là hình chữ nhật (điều phải chứng minh).

 

(c) Do \(AIMK\) là hình chữ nhật (chứng minh trên) nên \(\left\{{}\begin{matrix}AK\left|\right|MI\Leftrightarrow AK\left|\right|ID\\AK=MI=ID\end{matrix}\right.\Rightarrow AKID\) là hình bình hành \(\Rightarrow IK\left|\right|AD\left(6\right)\).

Lại có: \(I,K\) là trung điểm của \(MD,MQ\Rightarrow IK\) là đường trung bình của \(\Delta MQD\Rightarrow IK\left|\right|QD\left(7\right)\)

Từ \(\left(6\right),\left(7\right)\Rightarrow Q,A,D\) thẳng hàng (điều phải chứng minh).

22 tháng 8 2023

a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có 

CI chung

MI=NI(gt)

Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)

b) Ta có: ΔIMC=ΔINC(cmt)

nên MCI^=NCI^(hai góc tương ứng)

hay BCA^=KCA^

Xét ΔBAC vuông tại A và ΔKAC vuông tại A có 

AC chung

BCA^=KCA^(cmt)

Do đó: ΔBAC=ΔKAC(cạnh góc vuông-góc nhọn kề)

⇒CB=CK(hai cạnh tương ứng)

Ta có: MI⊥AC(gt)

AB⊥AC(ΔABC vuông tại A)

Do đó: MI//AB(Định lí 1 từ vuông góc tới song song)

hay MN//KB

Xét ΔCKB có

M là trung điểm của CB(gt)

MN//KB(cmt)

Do đó: N là trung điểm của CK(Định lí 1 đường trung bình của tam giác)

c) Ta có: MA=ME(gt)

mà A,M,E thẳng hàng

nên M là trung điểm của AE

Xét tứ giác ABEC có

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AE(cmt)

Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

hay AB//EC(Hai cạnh đối trong hình bình hành ABEC)

d) Ta có: ABEC là hình bình hành(cmt)

nên AB=EC(Hai cạnh đối trong hình bình hành ABEC)

mà AB=AK(ΔCBA=ΔCKA)

nên EC=AK

Ta có: AB//EC(Cmt)

nên CE//KA

Xét tứ giác AECK có 

CE//AK(cmt)

CE=AK(cmt)

Do đó: AECK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Xét ΔCAB có 

M là trung điểm của BC(gt)

MI//AB(cmt)

Do đó: I là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

Ta có: AECK là hình bình hành(cmt)

nên Hai đường chéo AC và EK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà I là trung điểm của AC(cmt)

nên I là trung điểm của EK

hay E,I,K thẳng hàng(đpcm)

chúc bạn học tốt nha cái này mình cũng không chắc là đúng đó bạn :)

a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có

CI chung

MI=NI(gt)

Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)

b) Ta có: ΔIMC=ΔINC(cmt)

nên \(\widehat{MCI}=\widehat{NCI}\)(hai góc tương ứng)

hay \(\widehat{BCA}=\widehat{KCA}\)

Xét ΔCAB vuông tại A và ΔCAK vuông tại A có 

CA chung

\(\widehat{BCA}=\widehat{KCA}\)(cmt)

Do đó: ΔCAB=ΔCAK(Cạnh góc vuông-góc nhọn kề)

Suy ra: CA=CK(hai cạnh tương ứng)

Ta có: CN+NK=CK(N nằm giữa C và K)

CM+MB=CB(M nằm giữa C và B)

mà CK=CB(cmt)

và CN=CM(ΔCNI=ΔCMI)

nên NK=MB

mà \(MB=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên \(NK=\dfrac{BC}{2}\)

mà BC=KC(cmt)

nên \(NK=\dfrac{CK}{2}\)

mà điểm N nằm giữa hai điểm C và K

nên N là trung điểm của CK(đpcm)

c) Xét ΔAMB và ΔEMC có

MA=ME(gt)

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔEMC(c-g-c)

Suy ra: \(\widehat{MAB}=\widehat{MEC}\)(hai góc tương ứng)

mà \(\widehat{MAB}\) và \(\widehat{MEC}\) là hai góc ở vị trí so le trong

nên AB//EC(Dấu hiệu nhận biết hai đường thẳng song song)

a: Xét ΔIMC vuông tại I và ΔINC vuông tại I có 

CI chung

IM=IN

Do đó: ΔIMC=ΔINC

a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có 

CI chung

MI=NI(gt)

Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)

b) Ta có: ΔIMC=ΔINC(cmt)

nên \(\widehat{MCI}=\widehat{NCI}\)(hai góc tương ứng)

hay \(\widehat{BCA}=\widehat{KCA}\)

Xét ΔBAC vuông tại A và ΔKAC vuông tại A có 

AC chung

\(\widehat{BCA}=\widehat{KCA}\)(cmt)

Do đó: ΔBAC=ΔKAC(cạnh góc vuông-góc nhọn kề)

⇒CB=CK(hai cạnh tương ứng)

Ta có: MI⊥AC(gt)

AB⊥AC(ΔABC vuông tại A)

Do đó: MI//AB(Định lí 1 từ vuông góc tới song song)

hay MN//KB

Xét ΔCKB có

M là trung điểm của CB(gt)

MN//KB(cmt)

Do đó: N là trung điểm của CK(Định lí 1 đường trung bình của tam giác)

c) Ta có: MA=ME(gt)

mà A,M,E thẳng hàng

nên M là trung điểm của AE

Xét tứ giác ABEC có

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AE(cmt)

Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

hay AB//EC(Hai cạnh đối trong hình bình hành ABEC)

d) Ta có: ABEC là hình bình hành(cmt)

nên AB=EC(Hai cạnh đối trong hình bình hành ABEC)

mà AB=AK(ΔCBA=ΔCKA)

nên EC=AK

Ta có: AB//EC(Cmt)

nên CE//KA

Xét tứ giác AECK có 

CE//AK(cmt)

CE=AK(cmt)

Do đó: AECK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Xét ΔCAB có 

M là trung điểm của BC(gt)

MI//AB(cmt)

Do đó: I là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

Ta có: AECK là hình bình hành(cmt)

nên Hai đường chéo AC và EK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà I là trung điểm của AC(cmt)

nên I là trung điểm của EK

hay E,I,K thẳng hàng(đpcm)