K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2020

Sử dụng Cauchy Schwarz và AM - GM ta dễ có:

\(P=x+y+\frac{1}{x}+\frac{1}{y}\ge x+y+\frac{4}{x+y}\)

\(=\left[x+y+\frac{1}{4\left(x+y\right)}\right]+\frac{15}{4\left(x+y\right)}\)

\(\ge2\sqrt{\frac{x+y}{4\left(x+y\right)}}+\frac{15}{4\cdot\frac{1}{2}}=\frac{17}{2}\)

Đẳng thức xảy ra tại x=y=1/4

NV
7 tháng 1

Từ giả thiết: \(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le\dfrac{1}{4}\Rightarrow\dfrac{y}{x}\ge4\)

\(\Rightarrow A=2\left(\dfrac{16x}{y}+\dfrac{y}{x}\right)+\dfrac{2020y}{x}\ge2.2\sqrt{\dfrac{16xy}{xy}}+2020.4=8096\)

\(A_{min}=8096\) khi \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)

6 tháng 5 2016

Ta có:

\(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)

\(x^2+y^2+2xy+7x+7y+y^2+10=0\)

\(x^2+y^2+1+2xy+2x+2y+5x+5y+5+4=0\)

\(\left(x+y+1\right)^2+5\left(x+y+1\right)+4=0\)

\(\left(x+y+1\right)^2+\left(x+y+1\right)+4\left(x+y+1\right)+4=0\)

\(\left(x+y+1\right)\left(x+y+2\right)+4\left(x+y+1\right)=0\)

\(\left(x+y+1\right)\left(x+y+6\right)=0\)

  • \(x+y=-1\)
  • \(x+y=-6\)

Max T=x+y+1=-6+1=-5 <=> x+y=-6

Min T=x+y+1=-1+1=0 <=> x+y=-1

25 tháng 8 2016

đề thiếu r`

25 tháng 8 2016

uk t quên , còn có cả bđt co-si nx

4 tháng 5 2019

1.

Đầu tiên ta cm: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\forall a,b>0\)

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}\ge\frac{2\sqrt{ab}}{ab}=\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\) (cô si)

Dấu "=" khi a = b.

Áp dụng:

\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\) \(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{\frac{1}{4xy}\cdot4xy}+\frac{5}{\left(x+y\right)^2}\)

\(=4+2+5=11\)

Vậy MinA = 11 khi \(x=y=\frac{1}{2}\)

4 tháng 5 2019

\(P=\frac{x^2+1}{x^2-x+1}\Leftrightarrow x^2+1=P\left(x^2-x+1\right)\)

\(\Leftrightarrow x^2+1-Px^2+Px-P=0\)(*)

\(\Leftrightarrow\left(1-P\right)x^2+Px+\left(1-P\right)=0\)

\(\Delta=P^2-4\left(1-P\right)^2\)

\(=P^2-4\left(1-2P+P^2\right)=-3P^2+8P-4\)

Để P có GTNN và GTLN thì phương trình (*) có nghiệm

\(\Leftrightarrow\Delta\ge0\Leftrightarrow-3P^2+8P-4\ge0\)

\(\Leftrightarrow-3P^2+2P+6P-4\ge0\)

\(\Leftrightarrow-P\left(3P-2\right)+2\left(3P-2\right)\ge0\)

\(\Leftrightarrow\left(3P-2\right)\left(2-P\right)\ge0\)

\(\Leftrightarrow\frac{2}{3}\le P\le2\)

Vậy \(min_P=\frac{2}{3}\Leftrightarrow x=-1\); \(max_P=2\Leftrightarrow x=1\)

21 tháng 10 2019

Trả lời : 

Bn tham khảo link này ạ : 

Câu hỏi của Cuồng Song Joong Ki - Toán lớp 9 - Học toán với OnlineMath 

Bài lm của bn : ★Ƙ - ƔƤČ★ - Trang của ★Ƙ - ƔƤČ★ - Học toán với OnlineMath nhé ! 

Chúc bn hc tốt <3 

( Dô thống kê hỏi đáp sẽ thấy )