chứng minh rằng a=1890^1930+1945^1975+1 chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : 1890 chia hết cho 7 => 1890^1930 chia hết cho 7
Áp dụng tính chất a^n + b^n chia hết cho a+b với mọi n lẻ và a,b thuộc N thì :
1945^1975 + 1 = 1945^1975 + 1^1975 chia hết cho 1945+1 = 1946
Mà 1946 chia hết cho 7 => 1945^1975+1 chia hết cho 7
=> a chia hết cho 7
Tk mk nha
biết 1890 chia hết cho 7
1945+1 =1946 chia hết cho 7
1946+1890=3836 cũng chia hết cho 7
số mũ =a x a x a x.......
mà bất cứ số nào chia hết cho 7 nhân với bao nhiêu cũng chia hết cho 7 vậy suy ra 18901930+19451975+1 chia hết cho 7
Do 1890 chia hết cho 7 nên => 18901930 chia hết cho 7
Ta thấy 1945 ko chia cho 7 mà 1946 chia hết cho 7 nên 19451975 ko chia hết cho 7 mà 19451975+1 sẽ chia hết cho 7 Do 18901930 chia hết cho 7 và 19451975+1 chia hết cho 7
Nên 18901930+19451975+1 chia hết cho 7
a.
Ta có :
A=999993^{1999}-555557^{1997}A=9999931999−5555571997
=999993^{1998}.999993-555557^{1996}.555557=9999931998.999993−5555571996.555557
=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557=(9999932)999.999993−(5555572)998.555557
=\left(.......9\right).999993-\left(......1\right).555557=(.......9).999993−(......1).555557
=\left(....7\right)-\left(....7\right)=(....7)−(....7)
=\left(....0\right)⋮5=(....0)⋮5
\Leftrightarrow A⋮5\left(đpcm\right)⇔A⋮5(đpcm)
ta có 1930^1930 có tc là 0
1945^1945 có tc là 5
1954^1954 có tc là 6 (mũ chẵn)
1975^1975 có tc là 5
2011^2011 có tc là 1
<=> A có tc là 0+5+6+5-1=15 chia hết cho 5 => A chia hết cho 5
có: \(1890^2\equiv0\left(mod7\right)\)
\(\Rightarrow\left(1890^2\right)^{965}\equiv0\left(mod7\right)\) (1)
Ta có: \(1945^2\equiv1\left(mod7\right)\)
\(\left(1945^2\right)^{987}\equiv1^{987}\equiv1\left(mod7\right)\)
\(\Rightarrow1945^{1975}\equiv1945^{1974}\cdot1945\equiv1\cdot6\equiv6\left(mod7\right)\) (2)
Từ (1), (2)
\(\Rightarrow1890^{1930}+1945^{1975}+1\equiv0+6+1\equiv7⋮7\left(đpcm\right)\)
Ta có : 1890 chia hết cho 7
1945+1=1946 chia hết cho 7
1946+1890=3836 chia hết cho 7
số mũ = a x a x a x .....
mà bất cư số nào chia hết cho 7 nhân v bao nhiều cũng chia hết cho 7
=> dpcm