Tìm n để A đạt giá trị là số nguyên:
A = 6n - 3 / 3n + 1
CÁC BẠN NHỚ TRÌNH BÀY CÁCH GIẢI VÀ LÀM THEO CÁCH CỦA LỚP 6 NHA!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(|x-9|\ge0\forall x\)
\(\Rightarrow|x-9|+10\ge0+10\forall x\)
Hay \(A\ge10\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x-9=0\)
\(\Leftrightarrow x=9\)
Vậy Min A =10 \(\Leftrightarrow x=9\)
Để A nhỏ nhất => /x-9/nhỏ nhất => /x-9/ = 0 => x - 9 =0 => x = 9
\(A=29\dfrac{1}{2}\cdot\dfrac{2}{3}+39\dfrac{1}{3}\cdot\dfrac{3}{4}+\dfrac{5}{6}\)
\(=\dfrac{59}{2}\cdot\dfrac{2}{3}+\dfrac{118}{3}\cdot\dfrac{3}{4}+\dfrac{5}{6}\)
\(=\dfrac{59}{3}+\dfrac{118}{4}+\dfrac{5}{6}\)
\(=\dfrac{59}{3}+\dfrac{59}{2}+\dfrac{5}{6}\)
\(=59\cdot\left(\dfrac{1}{3}+\dfrac{1}{2}\right)+\left(\dfrac{1}{3}+\dfrac{1}{2}\right)\)
\(=\dfrac{5}{6}\cdot\left(59+1\right)=\dfrac{5}{6}\cdot60=50\)
Ta có: Để \(\frac{n}{n+3}\)là số nguyên thì \(n⋮n+3\)
Suy ra:n+3-3\(⋮n+3\)
Suy ra:-3\(⋮n+3\)
Suy ra:n+3\(\in\left[1;3\right]\)
Suy ra:n=0(n thuộc N)
Vậy:S={0}