B=7/3n+1 tìm tất cả các gtri của n để B là 1 số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để B LÀ SỐ NGUYÊN SUY RA TỬ CHIA HẾT CHO MẪU ĐÓ
=> N.(3N+1)+6N-10 CHIA HẾT CHO 3N+1
=>6N+2 -12CHIA HẾT CHO 3N+1
VÌ 6N+2 CHIA HẾT CHO 3N => 12 CHIA HẾT CHO 3N+1
=> 3N +1 THUỘC ƯỚC CỦA 12
SAU ĐÓ BẠN TỰ LẬP BẲNG NHA
<=>n.(3n+1)+6n-10 chia hết cho 3n+1
<=>6n+2-12 chia hết cho 3n+1
Vì 6n+2 chia hết cho 3n=>12 chia hết cho 3n+1
=> 3n ước của 12
\(A=\dfrac{3n+1}{n-2}=\dfrac{3n-6+7}{n-2}=\dfrac{3\left(n-2\right)+7}{n-2}=3+\dfrac{7}{n-2}\)
A nguyên \(\Rightarrow\dfrac{7}{n-2}\) nguyên
\(\Rightarrow n-2=Ư\left(7\right)\)
\(\Rightarrow n-2=\left\{-7;-1;1;7\right\}\)
\(\Rightarrow n=\left\{-5;1;3;9\right\}\)
b) n = 0 ta có: 3n + 6 = 30 + 6 = 7 là số nguyên tố
n ≠ 0 ta có 3n ⋮ 3 ; 6 ⋮ 3 nên 3n + 6 ⋮ 3 ; 3n + 6 > 3
Số 3n + 6 là hợp số vì ngoài ước 1 và chính nó còn có ước là 3.
Vậy với n = 0 thì 3n + 6 là số nguyên tố.
Lời giải:
Đặt tổng trên là $A$.
Với $n=1$ thì $2^n+3^n+4^n=9$ là scp (thỏa mãn)
Xét $n\geq 2$. Khi đó:
$2^n\equiv 0\pmod 4; 4^n\equiv 0\pmod 4$
$\Rightarrow A=2^n+3^n+4^n\equiv 3^n\equiv (-1)^n\pmod 4$
Vì 1 scp khi chia 4 chỉ có thể có dư là $0$ hoặc $1$ nên $n$ phải là số chẵn.
Đặt $n=2k$ với $k$ nguyên dương.
Khi đó: $A=2^{2k}+3^{2k}+4^{2k}\equiv (-1)^{2k}+0+1^{2k}\equiv 2\pmod 3$
Một scp khi chia 3 chỉ có thể có dư là 0 hoặc 1 nên việc chia 3 dư 2 như trên là vô lý
Vậy TH $n\geq 2$ không thỏa mãn. Tức là chỉ có 1 giá trị $n=1$ thỏa mãn.
Bài 2:
a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3
b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3
\(\frac{n+4}{n-3}\)= \(\frac{n-3+7}{n-3}\)= \(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3
=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}
=> n\(\in\){ 4; 10; 2; -4}
Vậy...
c) Bn thay vào r tính ra
để B là một số nguyên thì 7 phải chia hết 3n+1 và 3n+1 thuộc ước của 7
vậy ư(7)={1;7;-1;-7}
Suy ra:3n+1=1
n=0 (loại)
3n+1=7
n=6 (chọn)
3n+1=-1
n thuộc rỗng loại
3n+1=-7
n thuộc rỗng loại
vậy n =2