Cho a và b là 2 số nguyên khác 0, biết a chia hết cho b và b chia hết cho a.Chứng tỏ rằng a= -b hoặc +b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a-b chia hết cho 2 =>a và b cùng chẵn hoặc lẻ
mà 2 số cùng chẵn hoặc lẻ có hiệu là số chẵn=>chia hết cho 2
vậy b-a chia hết cho 2
c-b chia hết cho 2 =>c và b cùng chẵn hoặc lẻ
mà a và b cùng chẵn hoặc lẻ =>c và a cùng chẵn hoặc lẻ
mà 2 số cùng chẵn hoặc lẻ có hiệu là số chẵn=>chia hết cho 2
=>a-c chia hết cho 2
1.
$a\vdots b, b\vdots a$ và $a,b\neq 0$ nên $|a|\geq |b|, |b|\geq |a|$
$\Rightarrow |a|=|b|$
$\Rightarrow a=\pm b$
Ta có đpcm.
2/
Áp dụng kết quả của bài 1, ta suy ra $n+5=n+1$ hoặc $n+5=-(n+1)$
Nếu $n+5=n+1$
$\Leftrightarrow 5=1$ (vô lý)
Nếu $n+5=-(n+1)$
$\Rightarrow 2n+6=0$
$\Rightarrow 2n=-6$
$\Rightarrow n=-3$
Giải:
+) a chia hết cho b => a = k. b ( với k là số tự nhiên ) (1)
+) b chia hết cho a => b = l . a ( với l là số tự nhiên ) (2)
Từ ( 1) , (2) => a = k . b = k . l . a
=> a - k . l . a = 0
=> a ( 1 - k . l ) = 0 Vì a khác 0
=> 1 - k . l = 0
=> k . l = 1 Vì k và l là hai số tự nhiên
=> k = l = 1
Vậy b = a.
Áp dụng:
18 chia hết cho ( x + 2) và ( x+ 2 ) chia hết cho 18
=> 18 = x + 2
=> x = 16