K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2018

Có : (x-y)^2 >= 0

<=> x^2-2xy+y^2 >= 0

<=> x^2+y^2 >= 2xy

<=> x^2+2xy+y^2 >= 4xy

<=> (x+y)^2 >= 4xy

Với x,y > 0 thì chia 2 vế bđt cho (x+y).xy > 0 ta được :

x+y/xy >= 4/x+y

<=> 1/x + 1/y >= 4xy

=> ĐPCM

Dấu "=" xảy ra <=> x=y > 0

Tk mk nha

30 tháng 9 2017

Ta có: \(x+y\ge2\sqrt{xy}\)(BĐT Cô si) (1)

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\) (2)

Từ (1) và (2) Suy ra : \(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{xy}.\frac{2}{\sqrt{xy}}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(đpcm)

tíck mình nha bn!!!!! thanks 

24 tháng 4 2016

1/x + 1/y >= 4/x+y

<=> x+y/xy >= 4/x+y

<=> (x+y)^2/xy(x+y) >= 4xy/xy(x+y)

<=> x^2 + y^2 + 2xy >= 4xy (x,y > 0)

<=> x^2 + y^2 + 2xy - 4xy >= 0

<=> (x-y)^2 >= 0 ( luôn đúng với mọi x,y)

Vậy bất đẳng thức đề bài đúng

4 tháng 8 2018

Ghi chú: Này, mình mới lớp 6, nên giải chưa biết chắc là đúng hay sai nên lỡ có sai thì bạn đừng trách mình nhé!

Đặt \(A=\frac{x}{y\left(z+1\right)}+\frac{y}{z\left(x+1\right)}+\frac{z}{x\left(y+1\right)}\le\frac{9}{4}\)(Sửa đề)

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a,b dương và x + y + z = 1,ta có:

\(\frac{4}{y\left(z+1\right)}=\frac{4}{y\left(z+x+y+z\right)}=\frac{4}{y\left(\left(z+x\right)+\left(z+y\right)\right)}\le\frac{4}{y}\left(\frac{1}{z+x}+\frac{1}{z+y}\right)\)

Nhân hai vế với số dương xy, ta được:

\(\frac{4xy}{y\left(z+1\right)}\le\frac{4xy}{y}\left(\frac{1}{z+x}+\frac{1}{z+y}\right)\). Do đó:

\(4A=\frac{4xy}{y\left(z+1\right)}+\frac{4yz}{z\left(x+1\right)}+\frac{4zx}{x\left(y+1\right)}\)

\(\le\frac{4xy}{y}\left(\frac{1}{z+x}+\frac{1}{z+y}\right)+\frac{4yz}{z}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{4zx}{x}\left(\frac{1}{y+z}+\frac{1}{y+z}\right)\)

\(=4x\left(\frac{1}{z+x}+\frac{1}{z+y}\right)+4y\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+4z\left(\frac{1}{y+z}+\frac{1}{y+z}\right)\)

\(=\frac{4x}{z+x}+\frac{4x}{z+y}+\frac{4y}{x+y}+\frac{4y}{x+z}+\frac{4z}{y+z}+\frac{4z}{y+z}\)

\(\Rightarrow4A\le\frac{4x+4y}{z+x}+\frac{4y+4z}{z+y}+\frac{4z+4x}{x+y}=x+y+z=9\)

Do : \(4A\le9\)nên \(A< \frac{9}{4}\)

NV
12 tháng 2 2020

\(\frac{x^5}{y^4}+\frac{x^5}{y^4}+y+y+y\ge5\sqrt[5]{\frac{x^{10}y^3}{y^8}}=\frac{5x^2}{y}\)

Tương tự: \(\frac{2y^5}{z^4}+3z\ge\frac{5y^2}{z}\) ; \(\frac{2z^5}{x^4}+3x\ge\frac{5z^2}{x}\)

Cộng vế với vế:

\(2\left(\frac{x^5}{y^4}+\frac{y^5}{z^4}+\frac{z^5}{x^4}\right)+3\left(x+y+z\right)\ge5\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)\ge5\left(x+y+z\right)\)

\(\Rightarrow2\left(\frac{x^5}{y^4}+\frac{y^5}{z^4}+\frac{z^5}{x^4}\right)\ge2\left(x+y+z\right)\ge2\)

\(\Rightarrow\frac{x^5}{y^4}+\frac{y^5}{z^4}+\frac{z^5}{x^4}\ge1\)

Dấu "=" xay ra khi \(x=y=z=\frac{1}{3}\)

5 tháng 7 2020

Áp dụng bđt cauchy schwarz dạng engel , ta có :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{1^2}{x}+\frac{1^2}{y}+\frac{1^2}{z}+\frac{1^2}{t}\ge\frac{16}{x+y+z+t}\)

\(< =>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+1\ge\frac{16}{x+y+z+t}+1\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=t\)

Vậy ta có điều phải chứng minh 

5 tháng 7 2020

cách khác :3

Áp dụng bđt phụ : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(< =>\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(< =>\frac{a+b}{ab}.\left(a+b\right).ab\ge\frac{4}{a+b}.\left(a+b\right).ab\)

\(< =>\left(a+b\right)^2\ge4ab\)

\(< =>a^2+2ab+b^2\ge4ab\)

\(< =>\left(a-b\right)^2\ge\)(luôn đúng)

Nên ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+1\ge\frac{4}{x+y}+\frac{4}{z+t}+1\ge\frac{16}{x+y+z+t}+1\)

7 tháng 5 2019

Theo Cô-si:

\(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\ge\frac{2\sqrt{xy}}{xy}=\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{x+y}{2}}=\frac{4}{x+y}\)

Dấu = khi x=y

2 tháng 5 2020

Áp dụng công thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\left(x,y>0\right)\)

Ta có \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{y+z}\right)\)

\(\frac{1}{y+z}\le\frac{1}{4y}+\frac{1}{4z}\)

=> \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}\right)\left(1\right)\)

Tương tự \(\hept{\begin{cases}\frac{1}{x+2y+z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{2y}+\frac{1}{4z}\right)\left(2\right)\\\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{4y}+\frac{1}{2z}\right)\left(3\right)\end{cases}}\)

(1)(2)(3) => \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

=> \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)