Tìm các số nguyên n thỏa mãn : 2n + 8 chia hết cho n +3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4n - 3 \(⋮\)3 - 2n
=> 4n - 3 \(⋮\)2n - 3
=> 4n - 6 + 3 \(⋮\)2n - 3
=> 2 . ( 2n - 3 ) + 3 \(⋮\)2n - 3 mà 2 . ( 2n - 3 ) \(⋮\)2n - 3 => 3 \(⋮\)2n - 3
=> 2n - 3 thuộc Ư ( 3 ) = { - 3 ; - 1 ; 1 ; 3 }
=> n thuộc { 0 ; 1 ; 2 ; 3 }
Vậy n thuộc { 0 ; 1 ; 2 ; 3 }
Tìm tất cả các số nguyên dương k sao cho tồn tại số nguyên dương n thỏa mãn 2n+11 chia hết cho 2k-1.
Để tìm tất cả các số nguyên dương k thỏa mãn điều kiện đã cho, ta sẽ giải phương trình theo n.
2n + 11 chia hết cho 2k - 1 có nghĩa là tồn tại một số nguyên dương m sao cho:
2n + 11 = (2k - 1)m
Chuyển biểu thức trên về dạng phương trình tuyến tính:
2n - (2k - 1)m = -11
Ta nhận thấy rằng nếu ta chọn một số nguyên dương nào đó, ta có thể tìm được một số nguyên dương k tương ứng để phương trình trên có nghiệm. Do đó, ta chỉ cần tìm tất cả các số nguyên dương n thỏa mãn phương trình trên.
Để giải phương trình này, ta có thể sử dụng thuật toán Euclid mở rộng (Extended Euclidean Algorithm). Tuy nhiên, trong trường hợp này, ta có thể tìm được một số giá trị n và k thỏa mãn phương trình bằng cách thử từng giá trị của n và tính giá trị tương ứng của k.
Dưới đây là một số cặp giá trị n và k thỏa mãn phương trình đã cho:
(n, k) = (3, 2), (7, 3), (11, 4), (15, 5), (19, 6), …
Từ đó, ta có thể thấy rằng có vô số giá trị n và k thỏa mãn phương trình đã cho.
Câu 1:
Ta có:102009=1000....00000000
2009 chữ số 0
Mà 10000....00000000 có tổng các chữ số bằng 1
1+8=9 chia hết cho 9
Vậy 102009+8 chia hết cho 9
Câu 2:
Ta có:(2n+3) là số lẻ vì 2n luôn là số chẵn còn 3 luôn là số lẻ
Mà số chẵn cộng với số lẻ thì được số lẻ(1)
Ta có:20 chia hết cho 1,2,4,5,10,20
Mà trong đó chỉ có 5 là số lẻ(2)
Từ (1) và (2) =>2n+3=5
2n =5-3
2n =2
n =1
1+0+0+.......+0+1+7=9 chia hết cho 9
Vậy 10^2019+17 chia hết cho 9
2n bằng 5-1
2n bằng 4
n bằng 4:2
n bằng 2
Hình nhưu còn 12,7,17,22,.....
2n+1:n-2
suy ra n+n-2+3:n-2
n+3:n-2
n-2+5:n-2
5:n-2
":" là dấu chia hết nha :3 típ nè
suy ra n-2 thuộc Ư(5)= (ngoặc vuông) 1;5 (ngoặc vuông)
TH1: n-2 =1
n=2+1
n=3
TH2: n-2=5
n=5+2
n=7
suy ra n thuộc (ngoặc vuông) 2,7 (ngoặc vuông)
Xong rùi nè
nhớ chọn câu trả lời của mk nha :Đ TYM TYM =))
Đảm bảo đúng 100% (9,3 đ giữa kì ó)
\(\left(2n+1\right)⋮\left(n-2\right)\Leftrightarrow\left[2\left(n-2\right)+5\right]⋮\left(n-2\right)\Leftrightarrow5⋮\left(n-2\right)\)
\(\Leftrightarrow n-2\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\Leftrightarrow n\in\left\{-3,1,3,7\right\}\).
2n + 8 chia hết cho n +3
=> (2n+6) - 6 + 8 chia hết cho n + 3
=> (2n+2.3) + 2 chia hết cho n + 3
=> 2(n+3) + 2 chia hết cho n+3
mà 2(n+3) chia hết cho n+3
=> 2 chia hết cho n+3
=> n+3 thuộc Ư(2)
n thuộc Z => x+3 thuộc Z
=> n+3 thuộc {-1;-2;1;2}
=> n thuộc {-4;-5;-2;-1}
vậy_____