chứng minh rằng a nhân a chia 5 liền dư 0;1;4. Nhanh lên mình đang gấp các bạn nhé!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1
Vì a : 5 dư 2
-> a= 5k + 2
Vì b :5 dư 3
-> b= 5h+3
Xét: ab= (5k+2)(5h+3)=25kh+15k+10h+6=5(5kh+3k+2h+1)+1
Vi 5(5kh+3k+2h)chia hết cho 5
->5(5kh+3k+2h)+1:5 dư 1
->ab:5 dư1
Ta có : a = 5 x p + 2 ( \(_{p\in n}\) )
Tương tự : b = 5 x q + 3 (\(q\in n\) )
Theo đề bài : a x b = ( 5 x p + 2 ) . ( 5 x q + 3 )
Hay : a x b = 25 x p x q x 10 x q + 15 x p + 6 = 5 x ( 5 x q x p x 2 x q x 3 x p ) + 6
Vì 5 x ( 5 x q x p x 2 x q x 3 x p ) \(⋮\) 5 , còn 6 chia hết cho 5 dư 1
=> a x b chia hết cho 5 dư 1
Hok tốt !
ta có a=5k+3
Nên a2= (5k+3)2=25k2+30k+9=25k2+30k+5+4=5(5k2+6k+1)+4 chia cho 5 dư 4 (dpcm)
Ta co:
\(a=5n+4\)
\(\Rightarrow a^2=\left(5n+4\right)^2=25n^2+40n+16\)
cai này chia 5 dư 1
Theo đề, a chia 5 dư 4 => a = 5k + 4 (k thuộc N)
Vì hai số đều là các số tự nhiên
Bình phương hai vế ta được: a2 = (5k + 4)2 = (5k)2+2.5k.4+42 = 25k2 + 40k + 16
Vì 25k2 chia hết cho 5
40k chia hết cho 5
Mà 16 chia 5 dư 1
Vậy 25k2 + 40k + 16 chia 5 dư 1
=> ĐPCM
Ta có : \(a.a=a^2\)là một số chính phương nên sẽ có tận cùng là 0,1,4,5,6,9
0 chia 5 sẽ dư 0
1 chia 0 dư 1
4 chia 5 dư 4
5 chia 5 dư 0
6 chia 5 dư 1
9 chia 5 dư 4
=> ta có đpcm
đếu bít