Cho \(\Delta\)ABC cs AB < AC, AD là tia phân giác của góc A( D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE = AB
a) CM : CD > BC
b) So sánh góc ADB và góc ADC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có AB<AC(gt)
mà góc đối diện với cạnh AB là \(\widehat{C}\)
và góc đối diện với cạnh AC là \(\widehat{B}\)
nên \(\widehat{C}< \widehat{B}\)(Định lí quan hệ giữa góc và cạnh đối diện trong một tam giác)
Xét ΔABD có \(\widehat{B}+\widehat{BAD}+\widehat{ADB}=180^0\)(Định lí tổng ba góc trong một tam giác)(1)
Xét ΔACD có \(\widehat{C}+\widehat{CAD}+\widehat{ADC}=180^0\)(Định lí tổng ba góc trong một tam giác)(2)
Từ (1) và (2) suy ra \(\widehat{B}+\widehat{BAD}+\widehat{ADB}=\widehat{C}+\widehat{CAD}+\widehat{ADC}\)
mà \(\widehat{B}>\widehat{C}\)(cmt)
và \(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
nên \(\widehat{ADB}< \widehat{ADC}\)
+) góc ADC là góc ngoài của tam giác BED tại đỉnh D => góc ADC > BED
+) Góc AEB là góc ngoài của tam giác BED tại đỉnh E => góc AEB > BDA
a) Ta có: \(\widehat{ADC}=\widehat{ABD}+\widehat{BAD}=90^0+\widehat{BAD}\)
\(\Rightarrow\widehat{ADC}>90^0\). Mà \(\widehat{ADC}+\widehat{ADB}=180^0\Rightarrow\widehat{ADB}< \widehat{ADC}\)
b) \(\Delta ABD=\Delta AHD\left(c.g.c\right)\Rightarrow\widehat{ABD}=\widehat{AHD}=90^0\)(2 góc tương ứng)
\(\Rightarrow DH⊥AC\)
c) Gọi AB và CK cắt nhau tại điểm I.
Xét \(\Delta ADC\): \(CI⊥AD\) tại K và \(AI⊥CD\) tại B.
=> I là trực tâm của \(\Delta ADC\). Mà \(DH⊥AC\)=> I,D,H thẳng hàng
=> AB,DH,CK đồng quy.