Cho tam giác ABC cân tại A có A^=20.Điểm M nằm ở trong tam giác sao cho tam giác MBC đều .chứng minh :
a,Tia AM là phân giác của góc BAC
b,góc ABM=góc ACM=góc BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
http://d.violet.vn//uploads/resources/285/2783442/preview.swf
trang 73
a) Xét tam giác ADB và ADC có: AD chung
DB=DC(vì tam giác DBC đều)
AB=AC ( tam giác ABC cân tại A)
=> tam giác ADB=tam giác ADC (c.c.c)
=>\(\widehat{ADB}=\widehat{ADC}\)(2 góc tương ứng)
mà AD nằm giữa AB và AC
=>AD là tia p/g của góc BAC
b. Ta có: ΔABC cân tại A, mà = 200 (gt)
=> = (1800 - 200) : 2 = 800
ΔABC đều nên = 600
Tia BD nằm giữa hai tia BA và BC
=> = 800 - 600 = 200
Tia BM là tia phân giác của góc ABD
=> = 100
Xét ΔABM và ΔBAD ta có:
\(\widehat{ABM}=\widehat{DAB}=10^0\)
AB là cạnh chung
\(\widehat{BAM}=\widehat{ABD}=20^0\)
Vậy ΔABM = ΔBAD (g - c - g)
Suy ra AM = BD
mà BD = BC ( gt )
=> AM = BC
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
mà tia AM nằm giữa hai tia AB,AC
nên AM là phân giác của \(\widehat{BAC}\)
b: Xét ΔCBD có CB=CD
nên ΔCBD cân tại C
Ta có: ΔCBD cân tại C
mà CN là đường phân giác
nên CN\(\perp\)BD
Helppppppppppppppppppppppppppppppppppppppppppp me
câu a: xét \(\Delta AMB\) và \(\Delta AMC\)có :
AB=AC(gt)
MB=MC(tam giác MBC cân)
AM là cạnh chung
\(\Rightarrow\Delta AMB=\Delta AMC\)(C.C.C)
\(\Rightarrow\)\(\widehat{BAM}=\widehat{CAM}\)
Vậy AM là tia phân giác\(\widehat{BAC}\)
B)
góc ABM= góc ACM= \(\frac{180º-20º}{2}-60º=20º\)
Vậy \(\widehat{ABM}=\widehat{ACM}=\widehat{BAC}\)