K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2018

Tham khảo bài này nha bạn:

Cho tam giác ABC vuông cân tại A. M là trung điểm của BC.điểm E nằm giữa M và C. kẻ BH, CK vuông góc?

với AE (H,K thuộc AE ). 
a. cm: BH=AK 
b, tam giác MBH= tam giác MAK 
c, tam giác MHK vuông cân.

  a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90° 
=> ^ABH = ^CAH 
Xét ▲ABH và ▲CAK có: 
^H = ^C (= 90°) 
AB = AC (T.g ABC vuông cân) 
^ABH = ^CAH (cmt) 
=> △ABH = △CAK (c.h-g.n) 
=> BH = AK 
b) Ta có BH//CK (Cùng ┴ AK) 
=>^HBM = ^MCK (SLT)(1) 
Mặt khác ^MAE + ^AEM = 90°(2) 
Và ^MCK + ^CEK = 90°(3) 
Nhưng ^AEM = ^CEK (đ đ)(4) 
Từ 2,3,4 => ^MAE = ^ECK (5) 
Từ 1,5 => ^HBM = ^MAE 
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC 
Xét ▲MBH và ▲MAK có: 
MB = AM (cmt); ^HBM = ^MAK(cmt); BH = AK (cma) 
=> △MBH = △MAK (c.g.c) 
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên : ▲AMH = ▲ CMK (c.c.c) 
=> ^AMH = ^CMK; mà ^AMH + ^HMC = 90 độ 
=> ^CMK + ^HMC = 90° hay ^HMK = 90° 
Tam giác HMK có MK = MH và ^HMK = 90° nên vuông cân

16 tháng 2 2020

AM// BC? 

16 tháng 2 2020

à chết mình nhầm

a)AM vuông góc BC nha các bạn

Mong các bạn giúp mình

14 tháng 12 2023

a: Xét ΔMAD và ΔMCB có

MA=MC

\(\widehat{AMD}=\widehat{CMB}\)(hai góc đối đỉnh)

MD=MB

Do đó: ΔMAD=ΔMCB

=>AD=BC

b: Xét ΔMAB và ΔMCD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD

Do đó: ΔMAB=ΔMCD

=>\(\widehat{MAB}=\widehat{MCD}=90^0\)

=>CD\(\perp\)CA

c: Xét tứ giác ABNC có

AB//NC

AC//BN

Do đó: ABNC là hình bình hành

=>AB=CN

Xét ΔABM vuông tại A và ΔCNM vuông tại C có

AB=CN

AM=CM

Do đó: ΔABM=ΔCNM

15 tháng 12 2023

C.ơn

b: Ta có: ΔABC cân tại A

mà AE là đường trung tuyến

nên AE là đường cao

a: Xét tứ giác AMEN có 

\(\widehat{AME}=\widehat{ANE}=\widehat{NAM}=90^0\)

Do đó: AMEN là hình chữ nhật

mà AE là tia phân giác

nen AMEN là hình vuông

19 tháng 10 2023

loading...  loading...  loading...  

4 tháng 11 2023

dịch xong chữ bạn này chắc mình tiền đình

 

28 tháng 10 2023

a: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là tia phân giác của \(\widehat{BAC}\)

Xét tứ giác AMEN có

\(\widehat{AME}=\widehat{ANE}=\widehat{MAN}=90^0\)

=>AMEN là hình chữ nhật

Hình chữ nhật AMEN có AE là phân giác của \(\widehat{MAN}\)

nên AMEN là hình vuông

b: AMEN là hình vuông

=>\(\widehat{AMN}=45^0\)

=>\(\widehat{AMN}=\widehat{ABC}\)

mà hai góc này là hai góc ở vị trí đồng vị

nênMN//BC

c: Gọi O là giao điểm của AE và MN

AMEN là hình vuông

=>AE cắt MN tại trung điểm của mỗi đường và AE=MN

=>O là trung điểm chung của AE và MN và AE=MN

=>\(OA=OE=OM=ON=\dfrac{MN}{2}=\dfrac{AE}{2}\)

ΔMFN vuông tại F

mà FO là đường trung tuyến

nên \(FO=\dfrac{MN}{2}=\dfrac{AE}{2}\)

Xét ΔAFE có

FO là đường trung tuyến

\(FO=\dfrac{AE}{2}\)

Do đó: ΔAFE vuông tại F

=>\(\widehat{AFE}=90^0\)