Cho \(\Delta ABC\) có AB = AC. Gọi M là trung điểm của BC, từ M kẻ MH vuông góc AB tại H, MK vuông góc AC tại K.
a, C/minh: \(\Delta BMH=\Delta CMK\)
b, Cminh: HK // BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta BMH,\Delta CMK\) có :
\(\widehat{BHM}=\widehat{CKM}\left(=90^{^O}\right)\)
\(BM=MC\) (M là trung điểm của BC)
\(\widehat{HBM}=\widehat{KCM}\) ( tam giác ABC cân tại A)
=> \(\Delta BMH=\Delta CMK\) (cạnh huyền - góc nhọn)
b) Ta có : \(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\BH=CK\left(\Delta BMH=\Delta CMK\right)\end{matrix}\right.\)
Lại có : \(\left\{{}\begin{matrix}AB=AH+BH\\AC=AK+KC\end{matrix}\right.\)
Suy ra : AH = AK
Xét \(\Delta AHK\) có :
AH = AK (cmt)
=> \(\Delta AHK\) cân tại A
Ta có : \(\widehat{AHK}=\widehat{AKH}=\dfrac{180^{^O}-\widehat{A}}{2}\left(1\right)\)
Xét \(\Delta ABC\) cân tại A có :
\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{A}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{AHK}=\widehat{ABC}\left(=\dfrac{180^o-\widehat{A}}{2}\right)\)
Mà thấy : 2 góc này ở vị trí đồng vị
Do đó : HK // BC (đpcm)
a, Xét ΔABM và ΔACM có :
AB=AC
∠B=∠C (ΔABC cân tại A)
BM=CM ( M là trung điểm của BC)
Do đó ΔABM = ΔACM (c.g.c)
b, Xét ΔBMH và ΔCMK có
BHM =CKM (=90o)
BM=CM ( M là trung điểm của BC)
∠B=∠C (ΔABC cân tại A)
Do đó ΔBMH = ΔCMK (ch-gn)
xét TG BMH VÀ CMK CÓ
MB =MC
GÓC HMB=CMK
GÓC BHM = CKM
=>TG BMH = CMK (G-C-G)
a: Xét ΔABC có
M là trung điểm của BC
MK//AB
Do đó: K là trung điểm của AC
Bạn tự vẽ hình nha
a) Vì AB = AC
\(\Rightarrow\) \(\Delta ABC\) cân tại A
\(\Rightarrow\) \(\widehat{B}=\widehat{C}\) (Hai góc kề một đáy)
Xét hai tam giác vuông \(\Delta BMH\) và \(\Delta CMK\) , ta có:
\(\widehat{B}=\widehat{C}\) ( Chứng minh trên)
\(MB=MC\) (M là trung điểm của BC)
\(\Rightarrow\Delta BMH=\Delta CMK\) (cạnh huyền góc nhọn)
b) Tự làm