Tính
A=5/1*2+5/2*3+5/3*4+...+5/99*100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: \(=\dfrac{3}{2}\cdot1-1-20=\dfrac{3}{2}-21=\dfrac{-39}{2}\)
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
a.\(\dfrac{27}{8}\)
b.\(\dfrac{37}{40}\)
c.\(\dfrac{5}{2}\)
d.\(\dfrac{7}{3}\)
e.5
g.\(\dfrac{53}{16}\)
Bài 1 :
a) \(\dfrac{3}{2}+\dfrac{5}{4}+\dfrac{5}{8}=\dfrac{12}{8}+\dfrac{10}{8}+\dfrac{5}{8}=\dfrac{12+10+5}{8}=\dfrac{27}{8}\)
b) \(\dfrac{4}{5}-\dfrac{3}{8}+\dfrac{2}{4}=\dfrac{32}{40}-\dfrac{15}{40}+\dfrac{20}{40}=\dfrac{32-15+20}{40}=\dfrac{37}{40}\)
c) \(3+\dfrac{6}{8}-\dfrac{5}{4}=\dfrac{3}{1}+\dfrac{6}{8}-\dfrac{5}{4}=\dfrac{24}{8}+\dfrac{6}{8}-\dfrac{10}{8}=\dfrac{20}{8}=\dfrac{5}{2}\)
d) \(\dfrac{5}{6}-\dfrac{1}{2}+2=\dfrac{5}{6}-\dfrac{1}{2}+\dfrac{2}{1}=\dfrac{5}{6}-\dfrac{3}{6}+\dfrac{12}{6}=\dfrac{14}{6}=\dfrac{7}{3}\)
e) \(\dfrac{3}{5}+\dfrac{6}{11}+\dfrac{7}{13}+\dfrac{2}{5}+\dfrac{16}{11}+\dfrac{19}{13}=\left(\dfrac{3}{5}+\dfrac{2}{5}\right)+\left(\dfrac{6}{11}+\dfrac{16}{11}\right)+\left(\dfrac{7}{13}+\dfrac{19}{13}\right)=1+2+2=5\)
g) \(\dfrac{75}{100}+\dfrac{18}{21}+\dfrac{29}{32}+\dfrac{1}{4}+\dfrac{3}{21}+\dfrac{13}{32}=\dfrac{3}{4}+\dfrac{6}{7}+\dfrac{29}{32}+\dfrac{1}{4}+\dfrac{1}{7}+\dfrac{13}{32}=\left(\dfrac{3}{4}+\dfrac{1}{4}\right)+\left(\dfrac{6}{7}+\dfrac{1}{7}\right)+\left(\dfrac{29}{32}+\dfrac{13}{32}\right)=1+1+\dfrac{21}{16}=2+\dfrac{21}{16}=\dfrac{53}{16}\)
1+1+2+2+2+3+3+3+3+4+4+4+5+5+5+6+6+6+7+7+7+...+99+99+99+100
= (1x2)+(2x3)+(3x3)+(4x3)+(5x3)+(6x3)+(7x3)+...+(99x3)+100
=2x6x9x12x15x18x21x...x297+100
=(297-2) : 3 + 1 +100
ok , phần còn lại tự tính nha bạn
\(A=\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{99.100}\)
= \(5\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
= \(5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
=\(5\left(1-\frac{1}{100}\right)=5.\frac{99}{100}=\frac{99}{20}\)