Tìm a thuộc Z. Sao cho:
(2a+11) chia hết cho (a+4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk làm phụ mấy câu thôi
a)2a-7 chia hết cho a-1
2a-2-5 chia hết cho a-1
2(a-1)-5 chia hết cho a-1
=>5 chia hết cho a-1 hay a-1EƯ(5)={1;-1;5;-5}
=>aE{2;0;6;-4}
b)3a+4 chia hết cho a-3
3a-9+13 chia hết cho a-3
3(a-3)+13 chia hết cho a-3
=>13 chia hết cho a-3 hay a-3EƯ(13)={1;-1;13;-13}
=>aE{4;2;16;-10}
Giả sử a=7; b=1 => 2a-3b=2.7-3.1=11 chia hết cho 11
=> 3a-b=3.7-1=20 không chia hết cho 11 => đề bài sai nếu 2a-3b chia hết cho 11 thì 3a+b chia hết cho 11 mới đúng
+ 2a-3b chia hết cho 11 => 4(2a-3b) chia hết cho 11 => 4(2a-3b)=8a-12b=11a-11b-3a-b=11(a-b)-(3a+b) chia hết cho 11
Mà 11(a-b) chia hết cho 11 => 3a+b chia hết cho 11
+ 3a+b chia hết cho 11 mà a chia hết cho 11 => 3a chia hết cho 11 => b chia hết cho 11
1/
a/ \(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a(a+1)(a+2) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2,3) = 1 nên a(a+1)(a+2) chia hết cho 6. Ta có đpcm
b/ Đề sai , giả sử với a = 3
c/ \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1>0\)
d/ \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
e/ \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\)
2/ a/ \(x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
BT đạt giá trị nhỏ nhất bằng 2 tại x = 3
b/ \(-x^2+6x-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)
BT đạt giá trị lớn nhất bằng -2 tại x = 3
2a + 11 \(⋮\) a + 4 <=> 2(a + 4) + 3 \(⋮\) a + 4
=> 3 \(⋮\) a + 4 (vì 2(a + 4) \(⋮\) a + 4)
=> a + 4 ∈ Ư(3) = {1; -1; 3; -3}
a + 4 = 1 => a = -3
a + 4 = -1 => a = -5
a + 4 = 3 => a = -1
a + 4 = -3 => a = -7
Vậy a ∈ {-3; -5; -1; -7}