cho n thuộc Z.cmr (-n-1).(n+2) chia hết cho 12
mình cần gấp nhé cảm ơn ạ!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^6-n^2=n^2\left(n^4-1\right)=\left(n^2-1\right)n^2\left(n^2+1\right)\)
\(=\left(n-1\right).n.\left(n+1\right).n.\left(n^2-4\right)+5.n^2\left(n-1\right).\left(n+1\right)\)
\(=n^2\left(n-1\right).\left(n-2\right)\left(n+1\right)\left(n+2\right)+5n^2\left(n-1\right).\left(n+1\right)\)
Vì \(n\left(n-1\right)\left(n+1\right)\left(n+2\right)\left(n-2\right)\) là tích 5 số nguyên liên tiếp nên
\(n^2\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\) chia hết cho 3.4.5=60
Xét \(n\) chẵn thì \(n^2⋮4\) nên \(5n^2\left(n-1\right)\left(n+1\right)⋮20\) mà \(n\left(n+1\right)\left(n-1\right)⋮3\)
\(\Rightarrow5n^2\left(n-1\right)\left(n+1\right)⋮60\)
\(\Rightarrow n^2\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)+5n^2\left(n-1\right)\left(n+1\right)⋮60\) hay \(n^6-n^2⋮60\)
Xét \(n\) lẻ thì \(n-1,n+1\) cùng chẵn hay \(5n^2\left(n-1\right)\left(n+1\right)⋮4\)
\(\Rightarrow5n^2\left(n-1\right)\left(n+1\right)⋮60\) hay \(n^6-n^2⋮60\)
bạn ơi giải thích cho mình chỗ(n^2-1).n^2(n^2+1) taih sao lại bằng(n-1)n(n+1)n(n^2-4)+5n^2.(n-1)(n+1) được ko? Cảm ơn bn nhiều nha
a) \(n-4⋮n-1\)
ta có \(n-1⋮n-1\)
mà \(n-4⋮n-1\)
\(\Rightarrow n-4-\left(n-1\right)⋮n-1\)
\(\Rightarrow n-4-n+1\) \(⋮n-1\)
\(\Rightarrow-3\) \(⋮n-1\)
\(\Rightarrow n-1\in\text{Ư}_{\left(-3\right)}=\text{ }\left\{1;-1;3;-3\right\}\)
lập bảng giá trị
\(n-1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(2\) | \(0\) | \(4\) | \(-2\) |
vậy \(n\in\text{ }\left\{2;0;4;-2\right\}\)
a) n - 4 \(⋮\)n - 1
Ta có : n - 4 = (n - 1) - 3
Do n - 1 \(⋮\)n - 1
Để (n - 1) - 3 \(⋮\)n - 1 thì 3 \(⋮\)n - 1 => n - 1 \(\in\)Ư(3) = {\(\pm1;\pm3\)}
Với : n - 1 = 1 => n = 2
n - 1 = -1 => n = 0
n - 1 = 3 => n = 4
n - 1 = -3 => n = -5
Vậy n = {2; 0 ; 4 ; -5} thì n - 4 \(⋮\)n - 1
a,n-3 chia hết n+3
có n-3 chia hết n+3
<=> n+3-6chia hết n+3
vì n+3 chia hết n+3 nên 6 chia hết n+3
=>n+3 thuộc ước 6 ={1;2;3;6}
=> n = 4;5;6;9
MK làm phần c) còn các phần khác bn tự làm nha:
6n+4 \(⋮\)2n+1
+)Ta có:2n+1\(⋮\)2n+1
=>3.(2n+1)\(⋮\)2n+1
=>6n+3\(⋮\)2n+1(1)
+)Theo bài ta có:6n+4\(⋮\)2n+1(2)
+)Từ(1) và (2) suy ra (6n+4)-(6n+3)\(⋮\)2n+1
=>6n+4-6n-3\(⋮\)2n+1
=>1\(⋮\)2n+1
=>2n+1\(\in\)Ư(1)=1
=>2n+1=1
+)2n+1=1
2n =1-1
2n =0
n =0:2
n =0\(\in\)Z
Vậy n=0
Chúc bn học tốt
Bài giải
a) Ta có n + 5 \(⋮\)n - 1 (n \(\inℤ\))
=> n - 1 + 6 \(⋮\)n - 1
Vì n - 1 \(⋮\)n - 1
Nên 6 \(⋮\)n - 1
Tự làm tiếp.
b) Ta có 2n - 4 \(⋮\)n + 2
=> 2(n + 2) - 8 \(⋮\)n + 2
Vì 2(n + 2) \(⋮\)n + 2
Nên 8 \(⋮\)n + 2
Tự làm tiếp.
c) Ta có 6n + 4 \(⋮\)2n + 1
=> 6n + 4 - 3(2n + 1) \(⋮\)2n + 1
=> 6n + 4 - (6n + 3) \(⋮\)2n + 1
=> 1 \(⋮\)2n + 1
Tự làm tiếp
d) Ta có 3 - 2n \(⋮\)n + 1
=> -2n + 3 \(⋮\)n + 1
=> -2n - 2 + 5 \(⋮\)n + 1
=> -2(n + 1) + 5 \(⋮\)n + 1 (-2n - 2 + 5 = -2n + (-2).1 + 5 = -2(n + 1) + 5)
Vì -2(n + 1) \(⋮\)n + 1
Nên 5 \(⋮\)n + 1
Tự làm tiếp.
a) n + 11 chia hết cho n +2
n + 11 chia hết cho n + 2
Ta luôn có n+ 2 chia hết cho n+ 2
=> ( n+ 11) -( n+ 2) \(⋮\) (n +2)
=> ( n-n )+( 11- 2) \(⋮\) (n+ 2)
=> 9 chia hết cho (n+ 2)
=> Ta có bảng sau:
n+ 2 | -1 | -3 | -9 | 1 | 3 | 9 |
n | -3 | -5 | -11 | -1 | 1 | 8 |
Vì n thuộc N => n \(\in\) { 1; 8}
b) 2n - 4 chia hết cho n- 1
Ta có: (n -1 ) luôn chia hết cho (n- 1)
=> 2( n-1)\(⋮\) (n-1)
=>(2n- 2) chia hêt cho (n- 1)
=> (2n-4 )- (2n-2) chia hết cho (n-1 )
=> -2 chia hết cho ( n-1)
=> Ta có bảng sau:
n-1 | -1 | 1 | -2 | 2 |
n | 0 | 2 | -1 | 3 |
Vì n thuộc N nên n thuộc {0; 2; 3}