Cho tam giác ABC. M là phân giác góc A, M là trung điểm BC
a, CM: Tam giác ABC là tam giác cân
b, Cho biết AB = 37, AM = 35. Tính BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu AM là đg phân giác , đg trung tuyến thì tam giác ABC vuông tại A
→AM là đg cao ,đg trung trực
BC2= AB2 + AC2
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến ứng với cạnh đáy BC
nên AM là đường cao ứng với cạnh BC
b: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến ứng với cạnh huyền BC
nên AM=BM=CM
Xét ΔAMB vuông tại M có MA=MB
nên ΔAMB vuông tại M
a) xét ΔABM và ΔACM có
góc B = góc C
AB = AC ( ΔABC cân tại A )
BM=CM ( tính chất các đường của Δ cân từ đỉnh )
=> ΔABM = ΔACM
b) xét ΔBME và ΔCMF có
góc B bằng góc C
BM=CM
=> ΔBME=ΔCMF ( cạnh huyền góc nhọn )
=> FM = EM
=> ΔEMF cân tại M
c) gọi giao của EF và AM là O
ta có BE = CF => AE=AF
=> ΔAEF cân tại A
ta có AM là tia phân giác của góc A
mà O nằm trên AM suy ra AO cũng là tia phân giác của góc A
ta lại có ΔAEF cân tại A
suy ra AO vuông góc với EF
suy ra AM vuông góc với EF
xét ΔAEF và ΔABC có
EF và BC đều cùng vuông góc với AM => EF // BC
mình chỉ giúp ý d theo mong muốn của bạn thôi :)
Có : AH = AK ( cái này bạn chứng minh ở câu trên chưa mình không biết; nếu chưa thì bạn chứng minh đi nhé )
=> A thuộc đường trung trực của HK
và MH=MK
=> M thuộc đường trung trực của HK
=> AM là đường trung tực của HK
=> AM ⊥ HK
Xét\(\Delta\)AMB &\(\Delta\)AMC có:
BM=CM(AM là đg trung tuyến )
Góc BAM= góc CAM(AM là tia pg của góc A)
AM là cạnh chung
=>\(\Delta\)AMB=\(\Delta\)AMC(c.g.c)
=>AB=AC(2 cạnh tương ứng)
=>\(\Delta\)ABC cân tại A
b) theo a:\(\Delta\)AMB=\(\Delta\)AMC
=>góc AMB= góc AMC(2 góc tương ứng)
ta có: góc AMC+ góc AMB=180 độ(2 góc kề bù )
=>góc AMB+ góc AMB=180ĐỘ
=>góc AMB= góc AMC=90 độ
Xét \(\Delta\)AMB vuông tại M
=>AB^2=AM^2+BM^2(định lí pytago)
=>37^2=BM^2+35^2
=>BM^2=37^2-35^2=144=12^2
=>BM=12
=>CM=12
ta có:BC+BM+CM=12+12=24
a)
Sửa đề: ΔBIM=ΔCKM
Xét ΔBIM vuông tại I và ΔCKM vuông tại K có
BM=CM(M là trung điểm của BC)
\(\widehat{IBM}=\widehat{KCM}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBIM=ΔCKM(cạnh huyền-góc nhọn)
Ta có: M là trung điểm của BC
=> BM = CM
Ta có : AM là tia phân giác của góc A
=> Góc BAM = góc CAM
Xét tam giác BAM và tam giác CAM có:
BM = CM (cm trên)
Góc BAM = góc CAM (cm trên)
AM = AM ( cạnh chung)
Vậy tam giác BAM = tam giác CAM (c-g-c)
=> AB = AC ( cạnh tương ứng)
Vậy tam giác ABC là tam giác cân (đpcm)
a) vì M là trung điểm của BC nên AM là đường trung tuyến của tam giác ABC(1)
Mặt khác ta lại có AM là phân giác của góc A (gt)(2)
Từ (1) và (2) =>tam giác ABC là tam giác cân tại A (đpcm)
b) vì tam giác ABC cân tại A (cm câu a)=> AM là trung tuyến đồng thời là đường cao của ABC
Áp dụng đly Py-ta-go trong tam giác MAB ta có:
AM^2 + MB^2 = AB^2
<=> 35^2 + MB^2 = 37^2
<=>MB^2 = 37^2 - 35^2 = 144
=> MB = 12
Vì M thuộc BC => MB +MC =BC
hay 2MB = BC =>BC = 12x2 = 24
a,tam giác AMB và tam giác AMCcó:
góc BMA= góc CMA (gt)
BM=CM(gt)
gócBAM=góc CAM(gt)
suy ra,tam giác AMB=AMC(g.c.g) suy raAB=AC(2 cạnh t\ứng) hay tam giac ABC cân tại A
B,BC=24(cm theo định lí py-ta-go)