cho g(x)=4x^2+3x+1; h(x)=3x^2-3x-3 a, tìm nghiệm của h(x) và g(x) b, tính f(x) = g(x)-h(x) rồi tìm nghiệm của f(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x^3-3x^2 +1 x^2+2x-1 4x 4x^3+8x^2-4x - -11x^2+4x+1 -11 -11x^2-22x+11 - 26x-10
OLM chỉ có phần chụp ảnh cho CTV
Lưu ý bạn cố phải viết thẳng hàng vì OLM ko viết đc
\(f\left(x\right)=4x^4+3x-1-\left(3x^2-2x-3\right)=4x^4-3x^2+5x+2\)
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
`@` `\text {Ans}`
`\downarrow`
`a,`
` F(x)=3x^2-7+5x-6x^2-4x^2+8`
`= (3x^2 - 6x^2 - 4x^2) + 5x + (-7 + 8)`
`= -7x^2 + 5x + 1`
Bậc của đa thức: `2`
`G(x)=x^4+2x-1+2x^4+3x^3+2-x`
`= (x^4 + 2x^4) + 3x^3 + (2x - x) + (-1+2)`
`= 3x^4 + 3x^3 + x + 1`
Bậc của đa thức: `4`
`b,`
`F(x) + G(x) = (-7x^2 + 5x + 1)+(3x^4 + 3x^3 + x + 1)`
`= -7x^2 + 5x + 1+3x^4 + 3x^3 + x + 1`
`= 3x^4 + 3x^3 - 7x^2 + (5x + x) + (1+1)`
`= 3x^4 + 3x^3 - 7x^2 + 6x + 2`
`F(x) - G(x) = (-7x^2 + 5x + 1) - (3x^4 + 3x^3 + x + 1)`
`= -7x^2 + 5x + 1 - 3x^4 - 3x^3 - x - 1`
`= -3x^4 - 3x^3 - 7x^2 + (5x - x) + (1-1)`
`= -3x^4 - 3x^3 - 7x^2 + 4x`
a/
\(F\left(x\right)=\left(3-6-4\right)x^2+5x+\left(-7+8\right)=-7x^2+5x+1\) -> Đa thức bậc 2
\(G\left(x\right)=\left(1+2\right)x^4+3x^3+\left(2-1\right)x+\left(-1+2\right)=3x^4+3x^3+x+1\) -> Đa thức bậc 4
b/
\(F\left(x\right)+G\left(x\right)=-7x^2+5x+1+3x^4+3x^3+x+1\\ =3x^4+3x^3-7x^2+6x+2\)
\(F\left(x\right)-G\left(x\right)=-7x^2+5x+1-3x^4-3x^3-x-1\\ =-3x^4-3x^3-7x^2+4x\)