K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

Ta có: / 2x-4 / + / 2x+5 / =/ 4-2x / + / 2x+5 /

Ta có: / 4-2x / + / 2x+5 / >= / 4-2x+2x+5 / =9

Dấu "=" xảy ra <=> (4-2x)(2x+5) >=0

   <=> 4-2x >=0 và 2x+5>=0

    hoặc 4-2x <0 và 2x+5 <0

<=> 2>=x và x>=-5/2

hoặc 2<x và x<-5/2

<=> -5/2 <= x <= 2

Vậy Min B = 9 tại -5/2 <= x <=2 

7 tháng 3 2016

|2x-7| >= 0

=>|2x-7|+5-2x >= 5-2x

=>AMin=5-2x(*)

dấu "=" xảy ra<=>|2x-7|=0<=>x=7/2

thay x=7/2 vào (*) ta có:

AMin=5-2.7/2=-2

Vậy AMin=-2 tại x=7/2

13 tháng 3 2016

|2x-7| >= 0

=>|2x-7|+5-2x >= 5-2x

=>AMin=5-2x(*)

dấu "=" xảy ra<=>|2x-7|=0<=>x=7/2

thay x=7/2 vào (*) ta có:

AMin=5-2.7/2=-2

Vậy AMin=-2 tại x=7/2

9 tháng 2 2017

Có: \(A=\sqrt{\left(2x+1\right)^2+4}+3.I3y^2I+5\ge\sqrt{4}+3.0+5=7\)

dấu bằng xảy ra khi: \(\hept{\begin{cases}\left(2x+1\right)^2\\y=0\end{cases}=0}\)\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=0\end{cases}}\)

10 tháng 2 2017

Vì \(\left(2x+1\right)^2\ge0\)

\(\Rightarrow\left(2x+1\right)^2+4\ge4\)

\(\Rightarrow\sqrt{\left(2x+1\right)^2+4}\ge\sqrt{4}=2\)

\(3\left|3y^2\right|+5\ge5\)

Cộng vế với vế ta được :\(A=\sqrt{\left(2x+1\right)^2+4}+3\left|3y^2\right|+5\ge2+5=7\) có gtnn là 7

Dấu "=" xảy ra <=> \(\orbr{\begin{cases}\left(2x+1\right)^2=0\\\left|3y^2\right|=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\y=4\end{cases}}}\)

Vậy gtnn của A là 7 <=> x = - 1/2 ; y = 0

23 tháng 7 2018

\(\left(2x+1\right)\left(x-5\right)=2x^2-9x-5=2\left(x^2-\frac{9}{2}x+\frac{81}{16}\right)-\frac{121}{8}=2\left(x-\frac{9}{4}\right)^2-\frac{121}{8}\ge-\frac{121}{8} \)

Vậy GTNN của biểu thức là \(-\frac{121}{8}\)khi x = \(\frac{9}{4}\)

1 tháng 1 2020

Ta có: M = \(\frac{x^4+x^2+5}{x^4+2x^2+1}\)

M = \(\frac{\left(x^4+2x^2+1\right)-\left(x^2+1\right)+5}{\left(x^2+1\right)^2}\)

M = \(1-\frac{1}{x^2+1}+5\cdot\frac{1}{\left(x^2+1\right)^2}\)

Đặt \(\frac{1}{x^2+1}=y\)

Khi đó, ta có: M = \(1-y+5y^2=5\left(y^2-\frac{1}{5}y+\frac{1}{100}\right)+\frac{19}{20}=5\left(y-\frac{1}{10}\right)^2+\frac{19}{20}\ge\frac{19}{20}\forall y\)

Dấu "=" xảy ra <=> y - 1/10 = 0 <=> y = 1/10 <=> \(\frac{1}{x^2+1}=\frac{1}{10}\) <=> x2 + 1 = 10

<=> x2 = 9 <=> \(x=\pm3\)

Vậy MinM = 19/20 khi x = 3 hoặc x = -3

2 tháng 1 2020

Dạng này bạn chỉ cần để ý: \(x^4+2x^2+1=\left(x^2+1\right)^2\) là bình phương của một biểu thức.

Rồi đặt \(x^2+1=y\Rightarrow x^2=y-1\) rồi thay vào M là được!

30 tháng 5 2016

\(\text{a)Để C đạt GTNN}\)

\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)

\(\Rightarrow C\ge-10\)

\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)

30 tháng 5 2016

b)\(\text{Để D đạt GTLN}\)

=>(2x-3)2+5 đạt GTNN

Mà (2x-3)2\(\ge\)5

\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)