K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

Không mất tính tổng quát giả sử

\(1< a\le b\le c\)

Ta có: 

\(\left(b^2+2\right)\left(c^2+2\right)-\left[\frac{\left(b+c\right)^2}{4}+2\right]^2\)

\(=\frac{-\left(b-c\right)^2}{16}\left(b^2+c^2+6bc-16\right)\le0\)

\(\Rightarrow\left(b^2+2\right)\left(c^2+2\right)\le\left[\frac{\left(b+c\right)^2}{4}+2\right]^2\)

Đặt  \(c+b=2x\)

\(\Rightarrow VT\le\left(a^2+2\right)\left[\frac{\left(b+c\right)^2}{4}+2\right]^2\)

\(=\left[\left(6-2x\right)^2+2\right]\left(x^2+2\right)^2\)

Ta cần chứng minh

\(\left[\left(6-2x\right)^2+2\right]\left(x^2+2\right)^2-216\le0\)

\(\Leftrightarrow2\left(x-2\right)^2\left(2x^4-4x^3+3x^2-20x-8\right)\le0\)

(cái cuối cùng e tự chứng minh nha)

8 tháng 9 2018

BĐT Mincopxki 

Ta cần CM: \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+b\right)^2+\left(c+d\right)^2}\) 

\(\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+b^2+c^2+d^2+2\left(ab+cd\right)\) 

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ab+cd\) 

\(\Leftrightarrow a^2b^2+c^2d^2+b^2c^2+a^2d^2\ge a^2b^2+c^2d^2+2abcd\) 

\(\Leftrightarrow\left(bc-ad\right)^2\ge0\)(đúng)

NV
14 tháng 12 2020

\(\left(a^2+b^2+c^2+1\right)x=ab+bc+ca\)

\(\Leftrightarrow x=\dfrac{ab+bc+ca}{a^2+b^2+c^2+1}\)

Ta có:

\(x^2-1=\dfrac{\left(ab+bc+ca\right)^2}{\left(a^2+b^2+c^2+1\right)^2}-1=\dfrac{\left(ab+bc+ca-a^2-b^2-c^2-1\right)\left(ab+bc+ca+a^2+b^2+c^2+1\right)}{\left(a^2+b^2+c^2+1\right)^2}\)

\(=\dfrac{\left[-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2-2\right]\left[\left(a+b+c\right)^2+a^2+b^2+c^2+2\right]}{4\left(a^2+b^2+c^2+1\right)^2}< 0\)

\(\Rightarrow x^2-1< 0\Rightarrow\left|x\right|< 1\)

17 tháng 6 2019

t nói trước đây là bài làm rất xàm nên đừng tin nhé,spam đấy!

Không mất tính tổng quát giả sử \(c\ge0\)

\(a=c+x+y;b=c+y;c=c\)

Ta cần chứng minh \(A=f\left(x;y;c\right)=\left[\left(c+x+y\right)^2+\left(c+y\right)^2+c^2\right]\left[\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right]\ge\frac{9}{2}\)

\(\ge\frac{\left(3c+x+y\right)}{3}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right)=T\left(x;y;c\right)\)

Xét hiệu \(T\left(x;y;c\right)-T\left(x;y;0\right)=c\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right)\ge0\)

Nên \(T\left(x;y;c\right)\ge T\left(x;y;0\right)=\frac{1}{3}\left(x+y\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right)\)

Cần chứng minh \(\frac{1}{3}\left(x+y\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right)\ge\frac{9}{2}\)

...

8 tháng 11 2017

\(P\ge\frac{b^2+c^2}{a^2}+\frac{4a^2}{b^2+c^2}=\left(\frac{b^2+c^2}{a^2}+\frac{a^2}{b^2+c^2}\right)+\frac{3a^2}{b^2+c^2}\ge5\)

dấu " = "  <=>   \(b=c=\frac{a}{\sqrt{2}}\)

8 tháng 11 2017

Có : (a-b)^2 >= 2ab 

<=> a^2+b^2-2ab>=0

<=>a^2+b^2>=2ab (1)

<=> a^2+b^2+2ab>=4ab

<=> (a+b)^2 >=4ab (2)

Với a,b > 0 thì chia cả 2 vế (2) cho 4ab.(a+b) ta được :

a+b/ab >= 4/a+b

<=> 1/a + 1/b >= 4/a+b (3)

Áp dụng bđt (3) thì P >= 1/a^2.(b^2+c^2) +a^2.4/(b^2+c^2)

Áp dụng tiếp bđt (1) thì P >= 2\(\sqrt{\frac{1}{a^2}.\left(b^2+c^2\right).a^2.\frac{4}{b^2+c^2}}\) = 2.2 = 4

Dấu "=" xảy ra <=> (b^2+c^2)/a^2 = a^2/(b^2+c2) và b^2=c^2 <=> a^2 = b^2+c^2 và b^2=c^2 <=> a^2=2b^2=2c^2

Vậy Min P = 4 <=> a^2 = 2b^2 = 2c^2 

Câu 1:

Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)

\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)

Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)

Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)

23 tháng 3 2018

5 , a3+b3+c3\(\ge\) 3abc

\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0

\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)

ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)

(a-b)2+(b-c)2+(c-a)2\(\ge0\)

<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)

<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)

Từ (1)(2)(3)=> pt luôn đúng