Tìm x \(\in\)Z, biết:
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\)
Giúp mình nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi
Lí luận chung cho cả 3 câu :
Vì GTTĐ luôn lớn hơn hoặc bằng 0
a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)
b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)
c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)
\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)
\(\Rightarrow2\left(x+y+z\right)=0,2\)
\(\Rightarrow x+y+z=0,1\)
Từ đây tìm đc x, y, z
\(E=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)
\(A=\left\{1;-4\right\}\)
\(B=\left\{2;-1\right\}\)
a) Với mọi x thuộc A đều thuộc E \(\Rightarrow A\subset E\)
Với mọi x thuộc B đều thuộc E \(\Rightarrow B\subset E\)
b) \(A\cap B=\varnothing\)
\(\Rightarrow E\backslash\left(A\cap B\right)=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)
\(A\cup B=\left\{-4;-1;1;2\right\}\)
\(\Rightarrow E\backslash\left(A\cup B\right)=\left\{-5;-3;-2;0;3;4;5\right\}\)
\(\Rightarrow E\backslash\left(A\cup B\right)\subset E\backslash\left(A\cap B\right)\)
\(a.\left(x-4\right)\left(x+7\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-4=0\\x+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=-7\end{cases}}}\)
\(b.x\left(x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}}\)
\(c.\left(x-2\right)\left(5-x\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\5-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)
\(d.\left(x-1\right)\left(x^2+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x^2=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\x=-\left(-1\right)or\left(-1\right)\end{cases}}}\)
a) ( x - 4 ) . ( x + 7 ) = 0
một phép nhân có tích bằng 0
=> một trong hai thừa số này bằng 0
+) nếu x - 4 = 0 => x = 0 + 4 = 4
+) nếu x + 7 = 0 => x = 0 - 7 = -7
vậy x = { 4 ; -7 }
b) x . ( x + 3 ) = 0
x + 3 = 0 : x
x + 3 = 0
x = 0 - 3
x = -3
vậy x = -3
c) ( x - 2 ) . ( 5 - x ) = 0
một phép nhân có tích bằng 0
=> một trong hai thừa số này bằng 0
+) nếu x - 2 = 0 => x = 0 + 2 = 2
+) nếu 5 - x = 0 => x = 5 - 0 = 5
vậy x = { 2 ; 5 }
d) ( x - 1 ) . ( x2 + 1 ) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
+) x - 1 = 0 => x = 0 + 1 = 1
+) x2 + 1 = 0 => x2 = 0 - 1 = -1 => x = -1
vậy x = { 1 ; -1 }
a) \(\left(x-4\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-4=0\\x-7=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=7\end{array}\right.\)
b) \(x\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-3\end{array}\right.\)
c) \(\left(x-2\right)\left(5-x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\5-x=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=5\end{array}\right.\)
d) \(\left(x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x-1=0\) ( Vì \(x^2+1>0\) )
\(\Leftrightarrow x=1\)
a)
\(\left(x-4\right)\left(x-7\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=4\\x=7\end{array}\right.\)
Vậy x = 4 ; x = 7
b)
\(x\left(x+3\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=-3\end{array}\right.\)
Vậy x = 0 ; x = - 3
c)
\(\left(x-2\right)\left(5-x\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=5\end{array}\right.\)
Vậy x = 2 ; x = 5
d)
\(\left(x-1\right)\left(x^2+1\right)=0\)
Mà \(x^2+1\ge1\)
=> x = - 1
Vậy x = - 1
a) \(x\left(x-2\right)=\left(x-1\right)\left(x-2\right)\)
Rút gọn hai vế cho (x - 2), ta được:
\(x=x-1\)
\(x-x=1\)
\(0=1\)(vô lý)
Suy ra: Không tồn tại giá trị nào của x để thoả mãn đề bài.
b) \(\left(x-2\right)\left(x-3\right)=\left(x-3\right)\left(x-4\right)\)
Rút gọn hai vế cho (x-3), ta được:
\(x-2=x-4\)
\(-2=-4\)
Suy ra: Không tồn tại giá trị nào của x để thoả mãn đề bài.
c) \(\left(x+1\right)^2=\left(x+2\right)^2\)
\(\Rightarrow\) \(\sqrt{\left(x+1\right)^2}=\sqrt{\left(x+2\right)^2}\)
\(\Rightarrow\) \(x+1=x+2\)
\(\Rightarrow\) \(x-x=2-1\)
\(\Rightarrow0=1\)( vô lý)
Suy ra: Không tồn tại giá trị nào của x để thoả mãn đề bài.
d) \(\left(x+1\right)^{x-1}=0\Rightarrow\frac{\left(x+1\right)^x}{\left(x+1\right)}=0\)
Mà mẫu số luôn khác 0. Nên \(x+1\ne0\)
Mà để \(\frac{\left(x+1\right)^x}{\left(x+1\right)}=0\)
Thì \(\left(x+1\right)^x=0\)
\(\Rightarrow x+1=0\) ( Vô lý vì \(x+1\ne0\))
Suy ra: Không tồn tại giá trị nào của x để thoả mãn đề bài.
Vậy cả bốn câu trên đều không tồn tại giá trị của x.
( Nếu đúng thì k cho mình nhé!)
có: \(\hept{\begin{cases}\left(x-y-z\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}}\Rightarrow\left(x-y-z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y-z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y-z=0\\y-2=0\\z+3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+z\\y=2\\z=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\\z=-3\end{cases}}\)
Đặt A = ( x - 1 ) ( x - 2 ) ( x - 3 ) ( x - 4 )
+ Xét x = 1 ; x = 2 ; x = 3 ; x = 4 thì ta luôn có A = 0 ( loại )
Xét x < 1 ta có :
x - 1 < 0
x - 2 < 0
x - 3 < 0
x - 4 < 0
=> A = ( x - 1 ) ( x - 2 ) ( x - 3 ) ( x - 4 ) > 0 ( chọn )
Xét x > 4 ta có :
x - 1 > 0
x - 2 > 0
x - 3 > 0
x - 4 > 0
=> A = ( x - 1 ) ( x - 2 ) ( x - 3 ) ( x - 4 ) > 0 ( nhận )
Để A > 0 thì x < 1 hoặc x > 4
4 < x < 1
=> x = 3 ; 2
Ta có :
Với \(x< 1\) thì \(x-1,x-2,x-3,x-4\) đều nhỏ hơn 0 nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\)
Với \(1\le x< 2\) thì \(x-1\ge0;x-2,x-3,x-4\) đều nhỏ hơn 0 nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)< 0\)
Với \(2\le x< 3\) thì \(x-1\ge0;x-2\ge0,x-3< 0,x-4< 0\) nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\)
Với \(3\le x< 4\) thì \(x-1\ge0;x-2\ge0,x-3\ge0,x-4< 0\) nên
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)< 0\)
Với \(x\ge4\) thì \(x-1\ge0;x-2\ge0,x-3\ge0,x-4\ge0\)
nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\)
Vậy nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\Leftrightarrow x< 1\) hoặc \(2< x< 3\) hoặc x > 4.