K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

bình phương vế 1 rồi lấy pt 2 thế vào :

\(\frac{2}{xy}\)=\(4+\frac{1}{z^2}\)

25 tháng 4 2020

Bạn xem tại đây:

Câu hỏi của Miyano Akemi - Toán lớp 9 - Học toán với OnlineMath

https://olm.vn/hoi-dap/detail/199528853534.html

25 tháng 4 2020

đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)

HPT trở thành : \(\hept{\begin{cases}a+b+c=2\\2ab-c^2=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}c=2-a-b\\2ab-\left(2-a-b\right)^2=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}c=2-a-b\\a^2+b^2-4a-4b+8=0\end{cases}\Rightarrow\hept{\begin{cases}c=2-a-b\\\left(a-2\right)^2+\left(b-2\right)^2=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}c=-2\\a=b=2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{y}=2\\\frac{1}{z}=-2\end{cases}\Rightarrow x=y=\frac{1}{2};z=-\frac{1}{2}}\)

19 tháng 12 2018

ko co kien thuc ak

7 tháng 6 2019

Toán lớp 9 thì bạn qua bên lazi hoặc học 24h

Nha

Học tốt

30 tháng 12 2019

Hướng dẫn:

\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y+z}=\frac{1}{2}\left(1\right)\\\frac{1}{y}+\frac{1}{z+x}=\frac{1}{3}\left(2\right)\\\frac{1}{z}+\frac{1}{x+y}=\frac{1}{4}\left(3\right)\end{cases}}\)

ĐK: \(x;y;z;x+y;y+z;z+x\ne0\)

TH1: x + y + z = 0

=>  y + z = - x

thế vào (1); \(\frac{1}{x}+\frac{1}{-x}=\frac{1}{2}\)vô lí

TH2: x + y + z \(\ne\)0.

\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y+z}=\frac{1}{2}\\\frac{1}{y}+\frac{1}{z+x}=\frac{1}{3}\\\frac{1}{z}+\frac{1}{x+y}=\frac{1}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x+y+z}{xy+xz}=\frac{1}{2}\\\frac{x+y+z}{yz+xy}=\frac{1}{3}\\\frac{x+y+z}{xz+yz}=\frac{1}{4}\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{xy+xz}{x+y+z}=2\\\frac{yz+xy}{x+y+z}=3\\\frac{xz+yz}{x+y+z}=4\end{cases}}\)

Đặt : x + y + z = k

=> \(\hept{\begin{cases}xy+xz=2k\left(4\right)\\yz+xy=3k\left(5\right)\\xz+yz=4k\left(6\right)\end{cases}}\)<=> \(\hept{\begin{cases}xy=\frac{1}{2}k\\yz=\frac{5}{2}k\\xz=\frac{3}{2}k\end{cases}}\Leftrightarrow\hept{\begin{cases}2xy=k\\\frac{2yz}{5}=k\\\frac{2xz}{3}=k\end{cases}}\)

Trừ vế theo vế:

=> \(\hept{\begin{cases}x=\frac{z}{5}\\\frac{y}{5}=\frac{x}{3}\\\frac{z}{3}=y\end{cases}}\)<=> \(z=3y=5x\)thế vào (1)  rồi tìm x; y ; z.

\(\frac{1}{x}+\frac{1}{\frac{5x}{3}+5x}=\frac{1}{2}\)

<=> \(\frac{23}{20x}=\frac{1}{2}\Leftrightarrow x=\frac{23}{10}\)

khi đó: \(y=\frac{5x}{3}=\frac{23}{6};z=5x=\frac{23}{2}\)thử lại thỏa mãn.

15 tháng 11 2018

a/ Đảo ngược lại rồi đặc \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

15 tháng 11 2018

b/ Dễ thấy vai trò x, y, z như nhau nên ta chỉ cần xét 1 trường hợp tiêu biểu thôi.

Xét \(x>y>z\)

\(\Rightarrow\frac{1}{x}< \frac{1}{y}< \frac{1}{z}\)

\(\Rightarrow x+\frac{1}{y}>z+\frac{1}{x}\)(trái giả thuyết)

\(\Rightarrow x=y=z\)'

\(\Rightarrow x+\frac{1}{x}=2\)

\(\Leftrightarrow x=1\)

20 tháng 3 2020

Đúng là chơi lừa bịp thực sự bài này rất dễ đây là cách giải:

ta có: \(\left(x+y\right)^2+\left(y+z\right)^4+.....+\left(x+z\right)^{100}\ge0\)còn \(-\left(y+z+x\right)\le0\)  nên phương trình 1 vô lý 

tương tự chứng minh phương trinh 2 và 3 vô lý 

vậy \(\hept{\begin{cases}x=\varnothing\\y=\varnothing\\z=\varnothing\end{cases}}\)

thực sự bài này mới nhìn vào thì đánh lừa người làm vì các phương trình rất phức tạp nhưng nếu nhìn kĩ lại thì nó rất dễ vì các trường hợp đều vô nghiệm

20 tháng 4 2020

\(\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}=-\left(y+z+x\right)\)

Đặt : \(A=\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}\)

Ta dễ dàng nhận thấy tất cả số mũ đều chẵn 

\(=>A\ge0\)(1)

Đặt : \(B=-\left(y+z+x\right)\)

\(=>B\le0\)(2)

Từ 1 và 2 \(=>A\ge0\le B\)

Dấu "=" xảy ra khi và chỉ khi \(A=B=0\)

Do \(B=0< =>y+z+x=0\)(3)

\(A=0< =>\hept{\begin{cases}x+y=0\\y+z=0\\x+z=0\end{cases}}\)(4)

Từ 3 và 4 \(=>x=y=z=0\)

Vậy nghiệm của pt trên là : {x;y;z}={0;0;0}