cho tam giác ABC có góc B=góc C. CMR :tam giác ABC cân tại A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
AC=4cm
Xét ΔABC có AB<AC
nên \(\widehat{C}< \widehat{B}\)
Bài 2:
BC=6cm
=>AB+AC=14cm
mà AB=AC
nên AB=AC=7cm
Xét ΔABC có AB=AC>BC
nên \(\widehat{B}=\widehat{C}>\widehat{A}\)
ừ dữ liệu bài toán, ta có :
KBC= 10 độ, KCB=30 độ ==> BKC=140 độ ==> AKB + AKC=360-140 = 220 độ (1)
KBC=10 độ ==> ABK=40 độ ==> BAK+AKB=180-40=140 độ (2)
BCK=30 độ ==> ACK=20 độ ==> CAK +AKC=180-20=160 độ (3)
Tam giác ABC cân => góc BAC= 80 ( hay BAK + CAK=80 độ ) (4)
Từ (1) => AKB = 220 - AKC thế vào (2) ==> BAK-AKC= -80 (*)
Từ (4) ==>CAK=80-BAK thế vào (3) ==> -BAK+ AKC= 80 (**)
Giải hệ (*) (**) ==> BAK = 70 độ , AKC =150 độ
Suy nốt góc còn lại AKB = 70 độ ( do AKB= 140-BAK = 70 độ)
Suy ra tam giác ABK cân tại B ( 2 góc ở đáy bằng nhau)
Vẽ ΔMBC đều sao cho M nằm cùng phía với A so với BC
=>góc MBC=60 độ
=>góc MBA=10 độ
Xét ΔMAB và ΔMAC có
MA chung
AB=AC
MB=MC
Do đó: ΔMAB=ΔMAC
=>góc BMA=góc CMA=30 độ
Xét ΔBMA và ΔBCK có
góc MBA=góc KBC
MB=MC
góc BMA=góc KCB
Do đó: ΔBMA=ΔBCK
=>BA=BK
=>ΔBAK cân tại B
góc BAK=góc BKA=(180-40)/2=70 độ
Mk chỉ chứng minh chứ hông vẽ hình đâu nha !!!
C/m:
Từ giả thiết ta có:
\(\widehat{BAC}=180^0-\left(\widehat{ABC}+\widehat{ACB}\right)=180^0-\left(75^0+60^0\right)=45^0\) \(\left(.\right)\)
\(\widehat{B}_2=\widehat{ABC}-\widehat{B_1}=75^0-45^0=30^0\)
\(\widehat{C}_2=\widehat{ACB}-\widehat{C_1}=60^0-45^0=15^0\)
Giả sử \(MA\ne MB\)ta xét 2 trường hợp:
T/ hợp 1: \(MA< MB\)
Xét \(\Delta MAB,\)vì \(MA< MB\)nên \(\widehat{B_2}< \widehat{A}_2\)
Nối MA.
Để chứng minh MA =MB. Ta dùng phản chứng.
G/s: \(MA\ne MB\)
Vì tam giác MBC vuông cân => MB=MC và \(\widehat{MCB}=\widehat{MBC}=45^o\)
Xét tam giác ABC có: \(\widehat{ACB}=60^o;\widehat{ABC}=75^o\)=> \(\widehat{CAB}=180^o-60^o-75^o=45^o\)
Vì M nằm trong tam giác ABC => \(\widehat{ACM}=\widehat{ACB}-\widehat{MCB}=60^o-45^o=15^o\)và \(\widehat{ABM}=\widehat{ABC}-\widehat{MBC}=75^o-45^o=30^o\)
+) TH1: MA> MB=MC
Xét tam giác MAB có: MA >MB => ^MAB < ^MBA => \(\widehat{MAB}< 30^o\)
Xét tam giác MAC có: MA >MC => ^MAC < ^MCA => \(\widehat{MAC}< 15^o\)
=> \(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}< 30^o+15^o\Rightarrow\widehat{BAC}< 45^o\)(vô lí)
+) TH1: MA< MB=MC
Xét tam giác MAB có: MA <MB => ^MAB > ^MBA => \(\widehat{MAB}>30^o\)
Xét tam giác MAC có: MA <MC => ^MAC > ^MCA => \(\widehat{MAC}>15^o\)
=> \(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}>30^o+15^o\Rightarrow\widehat{BAC}>45^o\)(vô lí)
=> Điều giả sử là sai
=> MA=MB
Cho ai ko đọc đc câu hỏi thì:
a) cmr tam giác ABD = tam giác AEC
B) cm tứ giác BCDE là hình thang cân có đáy nhỏ bằng cạnh bên
C) cho góc A = 40 độ. Tính các góc còn lại của hình thang cân BCDE
a: Xét ΔABD và ΔACE có
góc ABD=góc ACE
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b:ΔABD=ΔACE
=>AD=AE
Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Xét tứ giác BEDC có
DE//BC
góc EBC=góc DCB
=>BEDC là hình thang cân
ED//BC
=>góc EDB=góc DBC
=>góc EDB=góc EBD
=>ED=EB
BEDC là hình thang cân
=>EB=DC
=>EB=ED=DC
c: góc EBC=góc DCB=(180-40)/2=70 độ
góc BED=góc EDC=180-70=110 độ
vì tam giác ABC có góc B=C nên :
cạnh AB=AC(tương ứng )
BC là cạnh chung
Suy ra tam giác ABC cân tại A
cảm ơn bn vgfgh........j nhé