Cho tam giác ABC vuông góc tại B. Đường trung trực của BC và AC lần lượt tại M, N. Trên tia đối của tia NB lấy điểm D sao cho ND=NA. CMR
a, CD vuông góc với BC
b, Tam giác ABC= Tam giác DCB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC
( Hình mình hk vẽ nha bạn, thông cảm -.- )
a,
*Xét tam giác MAB và tam giác MDC có:
+ MB = MC ( vì M là trung điểm của BC )
+ Góc BMA = góc DMC ( 2 góc đối đỉnh )
+ AM = AD ( gt )
\(\Rightarrow\)Tam giác MAB = tam giác MDC (c.g.c)
* Vì tam giác ABC vuông tại A \(\Rightarrow\)góc ABC + góc ACB = 90\(^0\)
Mà góc ABC = góc MCD ( vì tam giác MAB = tam giác MDC )
\(\Rightarrow\)Góc ACB + góc MCD = 90 \(^0\)
\(\Rightarrow\)Góc DCA = 90\(^0\)
\(\Rightarrow\)AC vuông góc CD
b, Xét tam giác BAN và tam giác DCN có
+ BA = DC ( vì tam giác MAB = tam giác MDC )
+ Góc BAC = góc DCA = 90\(^0\)
+ AN = NC ( vì N là trung điểm của AC )
\(\Rightarrow\)Tam giác BAN = tam giác DCN ( c.g.c )
\(\Rightarrow\)BN = DN ( 2 cạnh tương ứng )
k mình nhaaaaaaaaaaaaaaaaaaa