4n-5 là ước của 5n-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ta có : \(4n+7=4\left(n+1\right)+3\text{ chia hết hco }n+1\)
khi 3 chia hết cho n+1 hay \(\orbr{\begin{cases}n+1=1\\n+1=3\end{cases}\Leftrightarrow\orbr{\begin{cases}n=0\\n=2\end{cases}}}\)
b. ta có : \(5n+13=5\left(n+2\right)+3\) chia hết cho n+2 khi 3 chia hết cho n+2
vậy \(n+2=3\Leftrightarrow n=1\)
c.\(3n+5=3\left(n+1\right)+2\) chia hết cho n+1 khi 2 chia hết cho n+1
hay \(\orbr{\begin{cases}n+1=1\\n+1=2\end{cases}\Leftrightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}}\)
a) Phân tích : 34 = 2 . 17 và 2.
Vậy ƯCLN(34 ; 2) = 2
b) Phân tích 291 = 3 . 97 và 97.
Vậy ƯCLN(291 ; 97) = 97
c) Đặt ƯCLN(4n+3 ;5n+1) = d
=> 4n + 3 chia hết cho d và 5n + 1 chia hết cho d
=> 5 . (4n + 3) - 4 . (5n + 1) = 20n + 15 - 20n + 4 = 11 chia hết cho d
=> d \(\in\) Ư(11)
Vì d lớn nhất nên d = 11
Vậy ƯCLN(4n+3 ; 5n+1) = 11
a)2 số lẻ liên tiếp :1
b)2n+5 và 3n+7 :1;n
c)4n+3 và 5n+1 :1;n
k bít đúng k nữa
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
Đặt \(d=\left(4n+1,5n+1\right)\).
Suy ra
\(\left\{{}\begin{matrix}4n+1⋮d\\5n+1⋮d\end{matrix}\right.\Rightarrow5\left(4n+1\right)-4\left(5n+1\right)⋮d\Leftrightarrow1⋮d\)
Suy ra \(d=1\).
Vậy \(ƯC\left(4n+1,5n+1\right)=Ư\left(1\right)=\left\{-1;1\right\}\).
Nếu 5n - 3 chia hết cho 4n - 5 thì 4(5n - 3) = 20n - 12 cũng chia hết cho 4n - 5.
Ta tìm số nguyên n để 20n - 12 chia hết cho 4n - 5, sau đó thử lại xem trong các giá trị n đó, giá trị nào thỏa mãn điều kiện đề bài.
Ta có 20n - 12 = 5(4n - 5) + 13
Để 20n - 12 chia hết cho 4n - 5 thì 13 chia hết cho 4n - 5
Ta có bảng:
Với n = 1, 4n - 5 = - 1; 5n - 3 = 2, thỏa mãn.
Với n = -2, 4n - 5 = -13, 5n - 3 = -13, thỏa mãn.
Vậy n = 1 hoặc n = -2.