tứ giác ABCD có AC cắt BD tại O ,AC =4, DB=5cm , góc AOB=50 tính diện tích ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vận dụng bổ đề $S_{ABC}=\frac{1}{2}.AB.AC\sin A$ ta có:
$S_{ABCD}=S_{OAB}+S_{OBC}+S_{ODC}+S_{AOD}$
$=\frac{1}{2}.OA.OB.\sin \widehat{AOB}+\frac{1}{2}.OB.OC.\sin \widehat{BOC}+\frac{1}{2}.OD.OC.\sin \widehat{DOC}+\frac{1}{2}.OA.OD.\sin \widehat{AOD}$
$=\frac{1}{2}.OA.OB\sin 60^0+\frac{1}{2}.OB.OC.\sin 120^0+\frac{1}{2}.OD.OC\sin 60^0+\frac{1}{2}.OA.OD.\sin 120^0$
$=\frac{\sqrt{3}}{4}(OA.OB+OB.OC+OC.OD+OD.OA)$
$=\frac{\sqrt{3}}{4}(AC.BD)=\frac{\sqrt{3}}{4}.4.5=5\sqrt{3}$ (cm vuông)
\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB\cdot sinAOB=\dfrac{1}{2}\cdot OA\cdot OB\cdot sin60=\dfrac{\sqrt{3}}{4}\cdot OA\cdot OB\)
\(S_{OBC}=\dfrac{1}{2}\cdot OB\cdot OC\cdot sinBOC\)
\(=\dfrac{1}{2}\cdot OB\cdot OC\cdot sin120=\dfrac{\sqrt{3}}{4}\cdot OB\cdot OC\)
\(S_{ODC}=\dfrac{1}{2}\cdot OD\cdot OC\cdot sinDOC\)
\(=\dfrac{1}{2}\cdot OD\cdot OC\cdot sin60=\dfrac{\sqrt{3}}{4}\cdot OD\cdot OC\)
\(S_{AOD}=\dfrac{1}{2}\cdot OA\cdot OD\cdot sinAOD\)
\(=\dfrac{1}{2}\cdot OA\cdot OD\cdot sin60=\dfrac{\sqrt{3}}{4}\cdot OA\cdot OD\)
\(S_{ABCD}=S_{AOB}+S_{AOD}+S_{COD}+S_{COB}\)
\(=\dfrac{\sqrt{3}}{4}\left(OA\cdot OB+OB\cdot OC+OD\cdot OC+OD\cdot OA\right)\)
\(=\dfrac{\sqrt{3}}{4}\cdot\left(OB\cdot AC+OD\cdot AC\right)\)
\(=\dfrac{\sqrt{3}}{4}\left(AC\cdot BD\right)=\dfrac{\sqrt{3}}{4}\cdot4\cdot5=5\sqrt{3}\)