Tìm x,y biết: 4x^2+y^2-4x+10y+26=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x^2 +y^2 -4x+10y+26=0
4x^2-4x+1 +y^2+10y+25 =0
(2x-1)^2+(y+5)^2=0
suy ra 2x-1=0 và y+5=0
x=1/2,y=-5
4x2 + y2 - 4x + 10y + 26 = 0
<=> ( 4x2 - 4x + 1 ) + ( y2 + 10y + 25 ) = 0
<=> ( 2x - 1 )2 + ( y + 5 )2 = 0
<=> \(\hept{\begin{cases}2x-1=0\\y+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-5\end{cases}}\)
câu này căng đấy nhưng tớ sẽ cố giúp
thế này:
4x2 +y2-4x+10y+26=0.
= 4x\(^2\)- 4x+1+y\(^2\)+10x+25=0
= (2x-1)\(^2\)+ (y+5)\(^2\)= 0
=2x-1=0 và y+5=0
= x= 1/2 và y=-5
\(4x^2+y^2-4x+10y+26=0\)
\(\Leftrightarrow\)\(\left(4x^2-4x+1\right)+\left(y^2+10y+25\right)=0\)
\(\Leftrightarrow\)\(\left(2x-1\right)^2+\left(y+5\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}2x-1=0\\y+5=0\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=\frac{1}{2}\\y=-5\end{cases}}\)
Vậy..
4x2 - 4x + y2 + 10y + 26 = 0
<=> [(2x)2 - 2.2x + 1] + (y2 + 2.5y + 52) = 0
<=> (2x - 1)2 + (y + 5)2 = 0
Mà \(\left(2x-1\right)^2\ge0\forall x;\left(y+5\right)^2\ge0\forall y\)
nên \(\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(y+5\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-5\end{matrix}\right.\)
\(4x^2-4x+y^2+10y+26=0\)
=> \(4x^2-4x+y^2+10y+25+1=0\)
=> \(\left(4x^2-4x+1\right)+\left(y^2+10y+25\right)=0\)
=> \(\left(2x-1\right)^2+\left(y+5\right)^2=0\)
Ta thấy:
\(\left(2x-1\right)^2\ge0\)
\(\left(y+5\right)^2\ge0\)
=>\(\left(2x-1\right)^2+\left(y+5\right)^2\ge0\)
Mà \(\left(2x-1\right)^2+\left(y+5\right)^2=0\)
=>\(\left\{{}\begin{matrix}2x-1=0\\y+5=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-5\end{matrix}\right.\)
Vậy x = \(\dfrac{1}{2}\); y = -5
\(4x^2+y^2-12x+10y+34=0\)
\(\Leftrightarrow4x^2-12x+9+y^2+10y+25=0\)
\(\Leftrightarrow\left(2x-3\right)^2+\left(y+5\right)^2=0\left(1\right)\)
mà \(\left\{{}\begin{matrix}\left(2x-3\right)^2\ge0,\forall x\\\left(y+5\right)^2\ge0,\forall y\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3\right)^2=0\\\left(y+5\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\y+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-5\end{matrix}\right.\)
Ta có : \(4x^2+y^2-12x+10y+34=0\)
\(\Leftrightarrow4x^2-12x+9+y^2+10y+25=0\)
\(\Leftrightarrow\left(2x-3\right)^2+\left(y+5\right)^2=0\left(1\right)\)
Ta thấy : \(\left(2x-3\right)^2;\left(y+5\right)^2\ge0\)
Nên để (1) thoả mãn :
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\y+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-5\end{matrix}\right.\)
Vậy........
4\(x^2\) + y2 - 12\(x\) + 10y + 34 = 0
(4\(x^2\) - 12\(x\) + 9) + (y2 + 10y + 25) = 0
(2\(x\) - 3)2 + (y + 5)2 = 0
(2\(x\) - 3)2 ≥ 0 ∀ \(x\); (y + 5)2 ≥ 0 ∀ y
(2\(x-3\))2 + (y + 5)2 = 0 ⇔ \(\left\{{}\begin{matrix}2x-3=0\\y+5=0\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-5\end{matrix}\right.\)
Kl: (\(x;y\)) = ( \(\dfrac{3}{2}\); -5)
\(\Leftrightarrow4x^2-12x+9+y^2+10y+25=0\)
\(\Leftrightarrow\left(2x-3\right)^2+\left(y+5\right)^2=0\) (1)
Do \(\left(2x-3\right)^2\ge0\) và \(\left(y+5\right)^2\ge0\)
\(\Rightarrow\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3\right)=0\\y+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-5\end{matrix}\right.\)
Bài 1 :
a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)
TH1 : \(x-3=2\Leftrightarrow x=5\)
TH2 : \(x-3=-2\Leftrightarrow x=1\)
b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
TH1 : \(x-6=0\Leftrightarrow x=6\)
TH2 : \(x+4=0\Leftrightarrow x=-4\)
c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)
\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)
d, tương tự
4x^2+y^2-4x+10y+26=0
<=>4x2-4x+1+y2+10x+25=0
<=>(2x-1)2+(y+5)2=0
<=>2x-1=0 và y+5=0
<=>x=1/2 và y=-5