K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2020

Câu hỏi của Lê Tài Bảo Châu - Toán lớp 9 - Học toán với OnlineMath

6 tháng 7 2017

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right).\\ \)
\(=3\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right) \\ \)
\(abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)=12\left(ab+bc+ca\right)-8abc-18\left(a+b+c\right)+27\\ \)
\(4abc\ge\frac{4}{9}\left(12\left(ab+bc+ca\right)-27\right)=\frac{16}{3}\left(ab+bc+ca\right)-12\)
\(a^3+b^3+c^3+abc\ge3\left(a^2+b^2+c^2\right)+\frac{7}{3}\left(ab+bc+ca\right)-12 =\frac{11}{6}\left(a^2+b^2+c^2\right)-\frac{3}{2}\ge4\\ \)

6 tháng 12 2015

1/xy+1/xz>=1

<=> 1/x(1/y+1/z) >=1

<=>1/y+1/z>=x=4-y-z

<=>1/y+y+1/z+z>=4

<=>(1/y+y)+(1/z+z)>=4 (dễ nhá,tự cm đc chứ j)        

        >=2       >=2

27 tháng 10 2020

Theo điều kiện giả thiết, ta có:\(\sqrt{3}\ge x+y+z\Rightarrow3\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\Rightarrow xy+yz+zx\le1\)\(\Rightarrow VT\le\frac{x}{\sqrt{x^2+xy+yz+zx}}+\frac{y}{\sqrt{y^2+xy+yz+zx}}+\frac{z}{\sqrt{z^2+xy+yz+zx}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+x}.\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\)\(\le\frac{\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

26 tháng 2 2018

\(Q\ge2\left(x+y+z\right)+3.\frac{9}{x+y+z}=2\left(x+y+z\right)+\frac{27}{x+y+z}.\)

Đặt X+Y+Z=t (\(t\le1\))

\(Q\ge2t+\frac{27}{t}=\left(2t+\frac{2}{t}\right)+\frac{25}{t}\ge2\sqrt{2t.\frac{2}{t}}+\frac{25}{1}=4+25=29\\ \)

Dấu = xảy ra khi x=y=z=1/3

26 tháng 2 2018

Theo bđt cô si ta có : \(x+y+z\ge3\sqrt[3]{xyz}\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)

=> \(Q\ge6\sqrt[3]{xyz}+9\sqrt[3]{\frac{1}{xyz}}\ge2\sqrt{6\sqrt[3]{xyz}\cdot9\sqrt[3]{\frac{1}{xyz}}}=6\sqrt{6}\)

Dấu = xảy ra khi : \(6\sqrt[3]{xyz}=9\sqrt[3]{\frac{1}{xyz}}\) Giải ra ta đc : \(xyz=\frac{3}{2}\sqrt{\frac{3}{2}}\)

17 tháng 10 2019

\(\frac{x}{x+yz}+\frac{y}{y+zx}+\frac{z}{z+xy}=\frac{x}{x\left(x+y+z\right)+yz}+\frac{y}{y\left(x+y+z\right)+zx}+\frac{z}{z\left(x+y+z\right)+xy}\)

\(=\text{Σ}\frac{x}{\left(x+y\right)\left(x+z\right)}=\frac{2\left(xy+yz+xz\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)(1)

+) CM bổ đề (cái này khá hữu dụng): \(\left(x+y+z\right)\left(xy+yz+xz\right)\ge3\sqrt[3]{xyz}\cdot3\sqrt[3]{x^2y^2z^2}=9xyz\Leftrightarrow\frac{1}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\ge xyz\)

Có \(\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(x+y+z\right)\left(xy+yz+xz\right)-xyz\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\)

Thay vào (1)-> DPCM

Dấu = xảy ra khi x=y=z=1/3

17 tháng 10 2019

Thx HD film