tìm \(x\varepsilon Z:\) \(x^2-1⋮x-2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\dfrac{2\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{39\sqrt{x}+12}{5x+9\sqrt{x}-2}\\ =\dfrac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\dfrac{2\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\\ =\dfrac{\left(-7\sqrt{x}+7\right)\left(\sqrt{x}+2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\left(2\sqrt{x}-2\right)\left(5\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(5\sqrt{x}-1\right)}+\dfrac{39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\)
\(=\dfrac{-7x-14\sqrt{x}+7\sqrt{x}+14+10x-2\sqrt{x}-10\sqrt{x}+2+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\\ =\dfrac{3x+20\sqrt{x}+28}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}=\dfrac{\left(\sqrt{x}+2\right)\cdot\left(3\sqrt{x}+14\right)}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}+14}{5\sqrt{x}-1}\)
Đặt \(A=\frac{x^2+2x-1}{x-1}\)
Ta có:\(A=\frac{x^2+2x-1}{x-1}=\frac{\left(x-1\right)^2}{x-1}=x-1\)
Vậy để A nguyên thì x thỏa mãn mõi số nguyên
\(C=\dfrac{9+2\sqrt{x}}{2+3\sqrt{x}}\Rightarrow2C+3C\sqrt{x}=9+2\sqrt{x}\)
\(\Rightarrow\sqrt{x}\left(3C-2\right)=9-2C\)
\(\Rightarrow\sqrt{x}=\dfrac{9-2C}{3C-2}\ge0\Rightarrow\dfrac{2}{3}< C\le\dfrac{9}{2}\)
Mà C nguyên \(\Rightarrow C=\left\{1;2;3;4\right\}\)
- Với \(C=1\Rightarrow\sqrt{x}=\dfrac{9-2C}{3C-2}=7\Rightarrow x=49\)
- Với \(C=2\Rightarrow\sqrt{x}=\dfrac{9-2.2}{3.2-2}=\dfrac{5}{4}\Rightarrow x=\dfrac{25}{16}\)
... tương tự
C=9+2√x2+3√x⇒2C+3C√x=9+2√x
⇒√x(3C−2)=9−2C
⇒√x=9−2C3C−2≥0⇒23<C≤92
Mà C nguyên ⇒C={1;2;3;4}
- Với C=1⇒√x=9−2C3C−2=7⇒x=49
- Với C=2⇒√x=9−2.23.2−2=54⇒x=2516
\(P=\left(\frac{2x}{2x^2-5x+2}-\frac{5}{2x-3}\right):\left(3+\frac{2}{1-x}\right) \)(dk x khac 3/2 ; x khac 1)
\(P=\left(\frac{2x}{\left(2x-3\right)\left(x-1\right)}-\frac{5\left(x-1\right)}{\left(2x+3\right)\left(x-1\right)}\right):\left(\frac{3\left(x-1\right)}{x-1}-\frac{2}{x-1}\right)\)
\(P=\frac{2x-5x+5}{\left(2x-3\right)\left(x-1\right)}:\frac{3x-3-2}{x-1}\)
\(P=\frac{-\left(3x-5\right)}{\left(2x-3\right)\left(x-1\right)}\cdot\frac{x-1}{3x-5}\)
\(P=\frac{-1}{2x-3}\)
b) TC: \(|2x-1|=3\)
TH1) \(|2x-1|=2x-1\)khi \(x\ge\frac{1}{2}\)
2x-1=3 suy ra x=2 ( thoa dk)
TH2) \(|2x-1|=-2x+1\)khi \(x< \frac{1}{2}\)
-2x+1=3 suy ra x=-1 ( thoa dk)
khi x= 2 thi P=-1
khi x= -1 thi P=1/5
c) de P thuoc Z thi \(-\frac{1}{2x-3}\)thuoc Z
suy ra \(\frac{1}{3-2x}\)thuoc Z
suy ra 3-2x thuoc \(Ư\left(1\right)\in\left\{\pm1\right\}\)
khi 3-2x=1 thi x= 1 (ko thoa dk x khac 1)
khi 3-2x=-1 thi x=2(thoa dk)
vay x=2 thi P thuoc Z
d) giai tg tu cau c
Ta có:
\(\hept{\begin{cases}x^2-1⋮x-2\\x-2⋮x-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-1⋮x-2\\\left(x-2\right)\left(x+2\right)⋮x-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-1⋮x-2\\x^2-4⋮x-2\end{cases}}\)
\(\Leftrightarrow\left(x^2-1\right)-\left(x^2-4\right)⋮x-2\)
\(\Leftrightarrow3⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Lập bảng ta có:
Vậy \(x\in\left\{\pm1;3;5\right\}\)