cho tg MNP vuông cân tại M(MN=MP).Gọi H là trung điểm của NP
KẺ HE vuông góc MN (E thuộc MN)
HF vuông góc NP
CMR
a) TG ENH=tg FPH
b)tg EMH=tg FMH
c)MH là pg góc NMP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔMNP có
MQ là đường trung tuyến ứng với cạnh NP
MQ là đường phân giác ứng với cạnh NP
Do đó: ΔMNP cân tại M
Xét tam giác HNM và tam giác NMP, có:
^N: chung
^NHM = ^ NMP = 90 độ
Vậy tam giác NHM đồng dạng tam giác NMP (g.g )
\(\Rightarrow\dfrac{NM}{NP}=\dfrac{MH}{MP}\) (1)
Áp dụng định lý pitago \(NP=\sqrt{12^2+16^2}=20cm\)
(1)\(\rightarrow\dfrac{12}{20}=\dfrac{MH}{16}\)
\(MH=\dfrac{12.16}{20}=9,6cm\)