Cho tam giác ABC ,phân giác AD .Qua D kẻ đường thẳng song song với AB cắt AC ở E .Qua E kẻ đường thẳng song song với BC cắt AB ở K . Chứng minh : a,Tam giác AEDlà tam giác cân ; b,AE=BK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có AD là tia phân giác góc BAC => Góc BAD = góc BAC/2=70/2=35 độ
có BE // AD => góc BAD= góc ABE = 35 độ ( so le trong )
Có góc BAC + góc BAE = 180 độ ( kề bù )
=> góc BAE = 180 độ - góc BAC = 180 - 70 = 110 độ
Có BAE + ABE + AEB = 180 độ ( tổng 3 góc tam giác AEB )
=> AEB = 180 - BAE - ABE = 180 -110-35=35 độ
Qua N kẻ đường thẳng NP // AB (P thuộc BC)
Khi đó ta thấy ngay \(\Delta EBN=\Delta PNB\left(g-c-g\right)\Rightarrow EB=PN;EN=PB\) (1)
Do NP // AB nên \(\widehat{NPC}=\widehat{EPB}\); do DM // BC nên \(\widehat{ADM}=\widehat{EPB}\)
Suy ra \(\widehat{ADM}=\widehat{NPC}\)
Ta cũng có \(\widehat{DAM}=\widehat{PNC}\) (Hai góc đồng vị)
\(\Rightarrow\Delta DAM=\Delta PNC\left(g-c-g\right)\)
\(\Rightarrow AM=PC\) (2)
Từ (1) và (2) suy ra DM + EN = PC + BP = BC.
Ta có : \(A\widehat{_1}\)=\(\widehat{ADE}\)( 2 góc so le trong , DE // AB ) (1)
\(\widehat{A_1}=\widehat{A_2}\) ( Góc phân giác của góc A ) (2)
Từ ( 1) và (2) suy ra : \(\widehat{ADE}\)=\(\widehat{A_2}\)
=> \(\Delta\)ADE là tam giác cân