K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2023

*Đường tròn ngoại tiếp tam giác AEJ cắt JF tại K (K khác J).

\(\Rightarrow AJKE\) nội tiếp nên \(\widehat{EKF}=\widehat{JAF}\) (vì \(\widehat{EKF}\) là góc ngoài đỉnh K của tg AJKE).

Xét △EKF và △JAF có: \(\widehat{JFA}\) là góc chung, \(\widehat{EKF}=\widehat{JAF}\).

\(\Rightarrow\)△EKF∼△JAF (g-g).

\(\Rightarrow\dfrac{FE}{JF}=\dfrac{FK}{FA}\Rightarrow FE.FA=FK.FJ\left(1\right)\)

Ta có: A,C,B,E cùng thuộc (O) \(\Rightarrow AEBC\) nội tiếp.

Nên \(\widehat{JAE}=\widehat{JBC}\) (vì \(\widehat{JAE}\) là góc ngoài đỉnh A của tg AEBC).

Mà \(\widehat{JBC}+\widehat{EBF}=180^0\Rightarrow\widehat{JAE}+\widehat{EBF}=180^0\)

\(\Rightarrow\widehat{EKF}+\widehat{EBF}=180^0\) mà \(\widehat{EKF}+\widehat{EKJ}=180^0\)

\(\Rightarrow\widehat{JKE}=\widehat{JBF}\)

Xét △JEK và △JFB có: \(\widehat{JKE}=\widehat{JFB}\)\(\widehat{BJF}\) là góc chung.

\(\Rightarrow\)△JEK∼△JFB (g-g).

\(\Rightarrow\dfrac{JK}{JB}=\dfrac{JE}{JF}\Rightarrow JE.JB=JK.JF\left(2\right)\)

\(\left(1\right)+\left(2\right)\Rightarrow FE.FA+JE.JB=JF\left(JK+JK\right)=JK^2\left(đpcm\right)\)

12 tháng 7 2019

A P B M C F E D H 1 1 2 1 2 O

1. Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD ___________)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD.

=> CEHD là tứ giác nội tiếp

2. Ta có:  BE là đường cao

=> BE ┴ AC => góc BEC = 900.

CF là đường cao => CF ┴ AB => góc BFC = 900.

=> E và F cùng nhìn BC dưới một góc 900 

=> E và F cùng nằm trên đường tròn đường kính BC.

Vậy bốn điểm B,C,E,F cùng nằm trên một đường tròn.

3. Xét hai tam giác AEH và ADC ta có:

   góc AEH = góc ADC = 900; góc A là góc chung

=> Δ AEH ˜ Δ ADC  => AE/AD = AH/AC

   => AE.AC = AH.AD.

* Xét hai tam giác BEC và ADC ta có:

  góc BEC = góc ADC = 900; góc C là góc chung

=> Δ BEC ˜ Δ ADC => AE/AD = BC/AC

  => AD.BC = BE.AC.

24 tháng 1 2021

Vì BM, CN là 2 đường cao ứng vs AC, AB (gt)

\(\Rightarrow\) \(\widehat{AMB}=\widehat{ANC}\) = 90o

\(\Rightarrow\) \(\widehat{AMH}=\widehat{ANH}\) = 90o (H \(\in\) BM; H \(\in\) CN do BM \(\cap\) CN tại H)

Xét tứ giác ANHM có: \(\widehat{AMH}=\widehat{ANH}\)

\(\widehat{AMH}\) và \(\widehat{ANH}\) là 2 góc đối nhau (gt)

\(\Rightarrow\) ANHM là tứ giác nội tiếp (dhnb tứ giác nội tiếp)

Vì BM, CN là 2 đường cao ứng vs AC, AB (gt)

\(\Rightarrow\) \(\widehat{BNC}=\widehat{CMB}\) = 90o

Mà \(\widehat{BNC}\) và \(\widehat{CMB}\) đều nhìn cạnh BC với một góc 90o (cmt)

\(\Rightarrow\) BNMC là tứ giác nột tiếp (dhnb tứ giác nội tiếp)

Chúc bn học tốt!

Gọi O là trung điểm của AH

Ta có: ΔANH vuông tại N(HN⊥AB tại N)

mà NO là đường trung tuyến ứng với cạnh huyền AH(O là trung điểm của AH)

nên \(NO=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)

Ta có: ΔAMH vuông tại M(HM⊥AC tại M)

mà MO là đường trung tuyến ứng với cạnh huyền AH(O là trung điểm của AH)

nên \(MO=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Ta có: O là trung điểm của AH(cmt)

nên \(AO=OH=\dfrac{AH}{2}\)(3)

Từ (1), (2) và (3) suy ra OA=ON=OM=OH

⇔A,H,M,N∈(O)

hay tứ giác AMHN nội tiếp đường tròn(O)

Gọi D là trung điểm của BC

Ta có: ΔCBN vuông tại N(CN⊥AB tại N)

mà ND là đường trung tuyến ứng với cạnh huyền BC(D là trung điểm của BC)

nên \(ND=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(4)

Ta có: ΔMBC vuông tại M(MB⊥AC tại M)

mà MD là đường trung tuyến ứng với cạnh huyền BC(D là trung điểm của BC)

nên \(MD=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(5)

Ta có: D là trung điểm của BC(theo cách gọi)

nên \(BD=DC=\dfrac{BC}{2}\)(6)

Từ (4), (5) và (6) suy ra DB=DC=DN=DM

⇔B,C,N,M∈(D)

hay tứ giác BNMC nội tiếp đường tròn(D)(đpcm)