So sánh 2 phân số sau:
A=1000^9 +2/1000^9 -1 và B=1000^9 +1/1000^9 -2
mk cần gấp xin các bạn giúp đỡ,cảm ơn mn!!<3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a=1000^2012 thì \(A=\frac{a+2}{a-1}\) ; \(B=\frac{a}{a-3}\)
Xét \(A-B=\frac{a+2}{a-1}-\frac{a}{a-3}=\frac{\left(a+2\right)\left(a-3\right)-a\left(a-1\right)}{\left(a-1\right)\left(a-3\right)}\)
\(=\frac{a^2-a-6-a^2+a}{\left(a-1\right)\left(a-3\right)}=\frac{-6}{\left(a-1\right)\left(a-3\right)}\)
Do \(a>1;a>3\) nên \(\left(a-1\right)\left(a-3\right)>0\Leftrightarrow A-B< 0\)
Do đó \(A>B\)
\(\frac{1001}{1000}\)và \(\frac{1002}{1003}\)
Giải
Vì
\(\frac{1001}{1000}\)\(>1\)
\(\frac{1002}{1003}\)\(< 1\)
Nên
\(\frac{1001}{1000}\)\(>\frac{1002}{1003}\)
Hok tốt
a/
\(A=999^8\left(999+1\right)=1000.999^8\)
\(B=1000.1000^8\)
=> B>A
b/
\(2A=2+2^2+2^3+...+2^{10}+2^{11}\)
\(2A=1+2+2^2+2^3+...+2^{10}+2^{11}-1\)
\(2A=A+2^{11}-1\)
\(A=2^{11}-1\)
\(B=2^{11}-2\)
=> A>B
\(A=999^9+999^8=999^8\left(999+1\right)=999^8.1000< 1000^8.1000=1000^9\)
Trả lời :..............................
a < b........................
Hk tốt
\(A=\frac{1000^9+2}{1000^9-1}=\frac{1000^9-1+3}{1000^9-1}=\frac{1000^9-1}{1000^9-1}+\frac{3}{1000^9-1}=1+\frac{3}{1000^9-1}\)
\(B=\frac{1000^9+1}{1000^9-2}=\frac{1000^9-2+3}{1000^9-2}=\frac{1000^9-2}{1000^9-2}+\frac{3}{1000^9-2}=1+\frac{3}{1000^9-2}\)
Vì \(1000^9-1>1000^9-2\Rightarrow\frac{3}{1000^9-1}< \frac{3}{1000^9-2}\Rightarrow1+\frac{3}{1000^9-1}< 1+\frac{3}{1000^9-2}\Rightarrow A< B\)
Vậy A < B