Đặt A = n3 + 3n2 + 5n + 3 . Chứng minh rằng A chia hết cho 3 với mọi giá trị nguyên dương của n.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1: Quy nạp
Đặt An = n3 + 3n2 + 5n
+ Ta có: với n = 1
A1 = 1 + 3 + 5 = 9 chia hết 3
+ giả sử với n = k ≥ 1 ta có:
Ak = (k3 + 3k2 + 5k) chia hết 3 (giả thiết quy nạp)
Ta chứng minh Ak + 1 chia hết 3
Thật vậy, ta có:
Ak + 1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)
= k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5
= (k3 + 3k2 + 5k) + 3k2 + 9k + 9
Theo giả thiết quy nạp: k3 + 3k2 + 5k ⋮ 3
Mà 3k2 + 9k + 9 = 3.(k2 + 3k + 3) ⋮ 3
⇒ Ak + 1 ⋮ 3.
Cách 2: Chứng minh trực tiếp.
Có: n3 + 3n2 + 5n
= n.(n2 + 3n + 5)
= n.(n2 + 3n + 2 + 3)
= n.(n2 + 3n + 2) + 3n
= n.(n + 1)(n + 2) + 3n.
Mà: n(n + 1)(n + 2) ⋮ 3 (tích của ba số tự nhiên liên tiếp)
3n ⋮ 3
⇒ n3 + 3n2 + 5n = n(n + 1)(n + 2) + 3n ⋮ 3.
Vậy n3 + 3n2 + 5n chia hết cho 3 với mọi ∀n ∈ N*
vì 3n^2 và 3 chia hết cho 3 nên xét n^3 + 5n = n(n^2 + 5)
nếu n chia hết cho 3 thì ....
nếu n không chia hết cho 3 thì n^2 chia 3 dư 1 suy ra n^2 + 5 chia hết cho 3
ta có n là số nguyên dương => n là số tự nhiên khác 0
A = n3 + 3n2 + 5n +3
= (n3 - n) + 3(n2 +2n +1)
= n(n - 1)(n + 1) + 3(n2 + 2n +1)
ta thấy n(n-1)(n+1) là 3 số tự nhiên liên tiếp
mà tích 3 số tự nhiên liên tiếp thì chia hết cho 3
=> n(n-1)(n+1) chia hết cho 3
mặc khác 3(n2 + 2n +1) luôn chia hết cho 3
=> n(n-1)(n+1) + 3(n2 + 2n +1) chia hết cho 3 với mọi n nguyên dương
=> n3 + 3n2 + 5n +3 luôn chia hết cho 3 với mọi n nguyên dương
Lời giải:
\(A=n^3+3n^2+5n+3\)
\(A=n^2(n+1)+2n(n+1)+3(n+1)\)
\(A=(n+1)(n^2+2n+3)\)
Nếu \(n=3k\Rightarrow n^2+2n+3=9k^2+6k+3=3(3k^2+2k+1)\)
\(\Rightarrow n^2+2n+3\vdots 3\Rightarrow A\vdots 3\)
Nếu \(n=3k+1\Rightarrow n^2+2n+3=n(n+2)+3\)
\(=(3k+1)(3k+3)+3=3[(3k+1)(k+1)+1]\vdots 3\)
\(\Rightarrow A\vdots 3\)
Nếu \(n=3k+2\Rightarrow n+1=3k+3=3(k+1)\vdots 3\)
\(\Rightarrow A\vdots 3\)
Từ các TH trên suy ra A luôn chia hết cho 3 với mọi số tự nhiên $n$
A=n^3+3n^2+5n+3
<=>A=n^3+n^2+2n^2+2n+3n+3
<=>A=(n^2+2n+3)(n+1)
<=>A=n(n+1)(n+2)+3(n+1)
Ta thấy, n(n+1)(n+2) là tích ba số nguyên liên tiếp nên n(n+1)(n+2) chia hết cho 6 hay n(n+1)(n+2) chia hết cho 3(1)
Mặt khác, 3(n+1) luôn chia hết cho 3 với mọi x là số nguyên(2)
Từ (1) và (2)
=>n(n+1)(n+2)+3(n+1) chia hết cho 3
Đặt B=n^3+3n^2+5n
Khi n=1 thì B=1+3+5=9 chia hết cho 3
Khi n>1 thì Giả sử B=n^3+3n^2+5n chiahết cho 3
Ta cần chứng minh (n+1)^3+3(n+1)^2+5(n+1)chia hết cho 3
=n^3+3n^2+3n+1+3n^2+6n+3+5n+5
=n^3+3n^2+5n+3n^2+9n+9 chia hêt cho 3
=>B chia hết cho 3
=>A chia hết cho 3
a.
Đề bài sai, ví dụ \(n=1\) lẻ nhưng \(1^2+4.1+8=13\) ko chia hết cho 8
b.
n lẻ \(\Rightarrow n=2k+1\)
\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)
\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)
\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)
Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)
Ta có:\(A=n^3+3n^2+5n+3\)=\(n^3-n+3n^2+6n+3\)
=\(n\left(n^2-1\right)+3\left(n^2+2n+1\right)\)
\(=\left(n-1\right)n\left(n+1\right)+3\left(n+1\right)^2\)
Vì \(\left(n-1\right)n\left(n+1\right)\) là tích của 3 số nguyên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3\)
Mà \(3\left(n+1\right)^2⋮3\) nên \(A=n^3+3n^2+5n+3⋮3\) với mọi n