/x/+/x-1/+/x-2/=2
giúp mình cái cần gấp lập bảng nha :)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=\left(x+y\right)^2+4xy=x^2+2xy+y^2+4xy=x^2+6xy+y^2\)
2) \(B=\left(6x-2\right)^2+4\left(3x-1\right)\left(2+y\right)+\left(y+2\right)^2\)
\(=\left(6x-2\right)^2+2\left(6x-2\right)\left(y+2\right)+\left(y+2\right)^2\)
\(=\left(6x-2+y+2\right)^2=\left(6x+y\right)^2=36x^2+12xy+y^2\)
3) \(C=\left(x-y\right)^2+2\left(x^2-y^2\right)+\left(x+y\right)^2\)
\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x-y+x+y\right)^2=\left(2x\right)^2=4x^2\)
a) \(\left|4x-1\right|-\left|3x-\dfrac{1}{2}\right|=0\\ \Leftrightarrow\left|4x-1\right|=\left|3x-\dfrac{1}{2}\right|\\ \Leftrightarrow\left[{}\begin{matrix}4x-1=3x-\dfrac{1}{2}\\4x-1=\dfrac{1}{2}-3x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}4x-3x=1-\dfrac{1}{2}\\4x+3x=\dfrac{1}{2}+1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\7x=\dfrac{3}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{14}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{3}{14}\right\}\) là nghiệm của pt.
b) \(\left|x-1\right|-2x=\dfrac{1}{2}\\ \Leftrightarrow\left|x-1\right|=2x+\dfrac{1}{2}\left(ĐK:x\ge\dfrac{-1}{4}\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x+\dfrac{1}{2}\\x-1=-2x-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-2x=1+\dfrac{1}{2}\\x+2x=1-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-x=\dfrac{3}{2}\\3x=\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\left(ktmđk\right)\\x=\dfrac{1}{6}\left(tmđk\right)\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{6}\) là nghiệm của pt.
Lời giải:
a.
$|4x-1|-|3x-\frac{1}{2}|=0$
$\Leftrightarrow |4x-1|=|3x-\frac{1}{2}$
\(\Leftrightarrow \left[\begin{matrix} 4x-1=3x-\frac{1}{2}\\ 4x-1=\frac{1}{2}-3x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=\frac{3}{14}\end{matrix}\right.\)
b. Nếu $x\geq 1$ thì:
$|x-1|-2x=\frac{1}{2}$
$\Leftrightarrow x-1-2x=\frac{1}{2}$
$\Leftrightarrow -x-1=\frac{1}{2}$
$\Leftrightarrow x=\frac{-3}{2}$ (vô lý vì $x\geq 1$)
Nếu $x< 1$ thì:
$1-x-2x=\frac{1}{2}$
$\Leftrightarrow x=\frac{1}{6}$ (tm)
\(a,50\%x-0,2+x=\dfrac{4}{5}\)
\(\Leftrightarrow\dfrac{1}{2}x-0,2+x=\dfrac{4}{5}\)
\(\Leftrightarrow\dfrac{1}{2}x+x=\dfrac{4}{5}+0,2\)
\(\Leftrightarrow\dfrac{3}{2}x=\dfrac{4}{5}+\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{3}{2}x=1\)
\(\Leftrightarrow x=\dfrac{2}{3}\)
\(b,\left(x-\dfrac{3}{4}\right):\dfrac{1}{2}+\dfrac{3}{2}=\dfrac{25}{2}\)
\(\Leftrightarrow\left(x-\dfrac{3}{4}\right).2=\dfrac{25}{2}-\dfrac{3}{2}\)
\(\Leftrightarrow\left(x-\dfrac{3}{4}\right).2=\dfrac{22}{2}\)
\(\Leftrightarrow x-\dfrac{3}{4}=11:2\)
\(\Leftrightarrow x=\dfrac{11}{2}+\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{25}{4}\)
Mk xin phép ko vt lại đề nx
\(\Rightarrow A=\left[\left(3x-2\right)\left(x+1\right)-\left(2x+5\right)\left(x^2-1\right)\right]\div x+1\)
\(\Rightarrow A=3x-2-\left(2x-5\right)\left(x-1\right)\)
\(\Rightarrow x=\dfrac{1}{2}\)
\(\Rightarrow A=\dfrac{3}{2}-2-\left(1-5\right)\left(\dfrac{1}{2}-1\right)=-\dfrac{5}{2}\)
a)
`(x+2)^2 -x-2=0`
`<=> x^2 +4x+4-x-2=0`
`<=> x^2+3x+2=0`
`<=> x^2 +2x+x+2=0`
`<=> x(x+2)+(x+2)=0`
`<=> (x+2)(x+1)=0`
\(< =>\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)
b)
` c^2 -4c+4=c-2`
`<=> (c-2)^2 -c+2=0`
`<=> (c-2)^2 -(c-2)=0`
`<=> (c-2)(c-2-1)=0`
`<=> (c-2)(c-3)=0`
\(< =>\left[{}\begin{matrix}c-2=0\\c-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}c=2\\c=3\end{matrix}\right.\)
Cái Math Processing Error là \(\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\) bạn nhé.
/x-1/+x-2/=1 (1)
Bảng xét dấu:
x | 1 | 2 | ||
x-1 | -0 | + | bạn kéo 1 gạch đứng | + |
x-2 | - bạn kéo 1 gạch đứng nha! | - | 0 | + |
TH1: x<1 thì (1) <=> 1-x+2-x=1
-2x + 3 = 1
- 2x = -1
x = 1 (KTM)
TH2:với 1< hoặc = x bé hơn hoặc = 2 thì ta có:
(1) <=> x-1+2-x=1
0x + 1 = 1
0x = 0 ( vô lý ) => (KTM)
TH3: với x>2 thì ta có:
(1) <=> x-1+x-2=1
2x -3 = 1
2x = 4
x = 2
vậy k có giá trị nào thỏa mãn
\(\Leftrightarrow|^{ }_{ }x-1|^{ }_{ }+|^{ }_{ }2-x|^{ }_{ }=1\)
co \(|^{ }_{ }x-1|^{ }_{ }\ge x-1\)voi moi x
\(|^{ }_{ }2-x|^{ }_{ }\ge2-x\)voi moi x
\(\Rightarrow|^{ }_{ }x-1|^{ }_{ }+|^{ }_{ }2-x|^{ }_{ }\ge x-1+2-x=1\)
dau bang xay ra \(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le2\end{cases}}\Leftrightarrow1\le x\le2\)