choA=1+2012+20122+....+201272và B=201273-1. So sánh A và B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^{32}-1\right)< 3^{32}-1=B\)
b) \(A=2011.2013=\left(2012-1\right)\left(2012+1\right)=2012^2-1< 2012^2=B\)
A = 1 + 2012 + 2012^2 + ... + 2012^71 + 2012^72
2012A = 2012 + 2012^2 + 2012^3 + ... + 2012^72 + 2012^73
2012A - A = ( 2012 + 2012^2 + 2012^3 + ... + 2012^72 + 2012^73) - ( 1 + 2012 + 2012^2 + ... + 2012^71 + 2012^72)
2011A = 2012^73 - 1 = B
=> A = 2012^73 - 1/2011
=> A < B
Ta có A=1+2012+20122+...+201272
A.2012=2012+20122+...+201272+201273
A.2012-A=(2012+20122+...+201272+201273)-(1+2012+20122+...+201272)
A.2011=201273-1
A=(201273-1):2011
Vì 201273-1=201273-1 suy ra A<B
A=1+2012+2012 mũ 2 + 2012 mũ 3+.............+2012 mũ 72
A=2012^0+2012^1+2012^2+....+2012^72
2012A=2012^1+2012^2+.....+2012^73
2012A-A=2012^73-1
A=(2012^73-1)/2011<2012^73-1
Ta thấy :A = 1+2012+20122+20123+...+201272
=> 2012A = (1+2012+20122+20123+...+201272)*2012
=> 2012A = 2012+20122+20123+20124+...+201272+20122013
=> 2012A = (1+2012+20122+20123+...+201272)+201273-1
=> 2012A = A+201273-1
=> 2011A = 201273-1
=> A = (201273-1) : 2011
Mà [(201273-1) : 2011] < (201273-1)
=> A < B
2012A = (1+2012+20122+20123+...+201272).2012
=> 2012A = 2012+20122+20123+20124+...+201272+20122013
=> 2012A = (1+2012+20122+20123+...+201272)+201273-1
=> 2012A = A+201273-1
=> 2011A = 201273-1
=> A = (201273-1) : 2011
Mà [(201273-1) : 2011] < (201273-1)
=> A < B
Có : 2012A = 2012^2+2012^3+.....+2012^73
2011A = 2012A - A = (2012^2+2012^3+.....+2012^73)-(1+2012+2012^2+....+2012^72) = 2012^73 - 1
=> A = (2012^73 - 1)/2011 < 2012^73 - 1
=> A < B
Tk mk nha
Đặt \(x=2012\) thì \(A=1+x+x^2+...+x^{72}\)và \(B=x^{73}-1\).. Ta có
\(2012A=x+x^2+...+x^{73}\)
Suy ra \(2011A=\left(2012A-A\right)=x^{73}-1=B\). Do đó \(\frac{A}{B}=\frac{1}{2011}< 1\Rightarrow A< B\) (chú ý rằng \(B>0\))