K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2015

Áp dụng BĐT: |a| + |b| \(\ge\) |a + b| . Dấu "=" xảy ra khi a.b \(\ge\) 0 

Ta có A = |3 -2x| + |5 - 2x| + 3 = |3 - 2x| + |2x - 5| + 3 \(\ge\) |3 - 2x + 2x - 5| + 3 = 2 + 3 = 5

Dấu "=" xảy ra khi (3 - 2x).(2x - 5) \(\ge\) 0 hay (2x - 3). (2x - 5) \(\le\) 0 

Vì 2x - 3 > 2x - 5 nên 2x - 3 \(\ge\) 0 và 2x - 5 \(\le\) 0

=> x \(\le\) 5/2 và x \(\ge\) 3/2 => 3/2 \(\le\) x \(\le\) 5/2

Vậy Min A = 5 khi  3/2 \(\le\) x \(\le\) 5/2

 

22 tháng 7 2015

ta có

|3-2x|+|5-2x|+3=|2x-3|+|5-2x|+3\(\ge\)|2x-3+5-2x|+3=2+3=5

Vậy GTNN của |3-2x|+|5-2x|+3 là 5 tại:

2x-3\(\ge\)0 và 5-2x\(\ge\)0

=>x\(\ge\)3/2 và x\(\le\)5/2

=>3/2\(\le\)x\(\le\)5/2

22 tháng 12 2019

A = /2*-5-3/1+/2*-5

cuteNhãn

\(A=\frac{2x^2+3}{2x^2+5}=1-\frac{2}{2x^2+5}\)

vì A nhỏ nhất=>\(\frac{2}{2x^2+5}\)lớn nhất

=>2x2+5 bé nhất 

=>\(2x^2+5\ge2.0^2+5=5\)

=>2x2+5 bé nhất =5

dấu "=" xảy ra khi x=0

\(\Rightarrow Min_A=\frac{2.0^2+3}{2.0^2+5}=\frac{3}{5}\)

vậy \(Min_A=\frac{3}{5}\)

12 tháng 11 2019

a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)

\(\ge\left|x+1+y-2\right|\)

\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)

Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0

Vậy Min A = 4 <=>  (x + 1)(y - 2) \(\ge\)0

6 tháng 9 2021

hông biết mới học lớp 6 làm seo biết đc toán lớp 8 tự nghĩ đi nha

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

4 tháng 8 2015

Vì \(\left|2x-3\right|\ge0\) với mọi x 

     \(\left|2x-5\right|\ge0\) với mọi x

=> \(\left|2x-3\right|+\left|2x-5\right|+4\ge4\) với mọi x

Dấu "=" xảy ra : 

.................. (đến chỗ này bạn tự làm nốt nha) 

4 tháng 8 2015

\(\left|2x-3\right|+\left|2x-5\right|+4=\left|2x-3\right|+\left|5-2x\right|+4\ge\left|2x-3+5-2x\right|+4\)

\(=6\)

\(\text{Dấu "=" xảy ra khi: }\left(2x-3\right)\left(5-2x\right)\ge0\)

\(\Rightarrow2x-3\ge0\text{ và }5-2x\ge0\text{ Hoặc }2x-3\le0\text{ và }5-2x\le0\)

\(\Rightarrow x\ge\frac{3}{2}\text{ và }x\ge\frac{5}{2}\Rightarrow x\ge\frac{5}{2}\text{ Hoặc }x\le\frac{3}{2}\text{ và }x\le\frac{5}{2}\Rightarrow x\le\frac{3}{2}\)

\(\text{Vậy không có giá trị nào của x thỏa mãn GTNN của A là 6}\)

 

6 tháng 3 2023

A = 2(2x + 3)2 + 5

vì (2x + 3)2 ≥ 0 ∀ x ⇒ 2(2x +3)2 + 5 ≥ 5 

A(min) = 5 ⇒ x = - \(\dfrac{3}{2}\)

22 tháng 12 2023

Tìm GTNN của biểu thức (2x+5)4+3

15 tháng 9 2021
a) y=3-cos^2x b)4-|sin 2x|-5 Câu hỏi này mới đúng?
AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:
$A=(2x+5)^4+3$

Ta thấy: $(2x+5)^4\geq 0$ với mọi $x$

$\Rightarrow A=(2x+5)^4+3\geq 0+3=3$
Vậy $A_{\min}=3$

Giá trị này đạt được khi $2x+5=0\Leftrightarrow x=\frac{-5}{2}$