K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

Câu hỏi của Ngọn Gió Thần Sầu - Toán lớp 6 - Học toán với OnlineMath

14 tháng 1 2018

bạn mk đó

9: \(\Leftrightarrow n^2+n+3n+2+1⋮n+1\)

\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)

hay \(n\in\left\{0;-2\right\}\)

10: \(\Leftrightarrow n^2+4n+4-2⋮n+2\)

\(\Leftrightarrow n+2\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{-1;-3;0;-4\right\}\)

11: \(\Leftrightarrow n^2-2n+1+2⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{2;0;3;-1\right\}\)

14 tháng 1 2018

khocroikhocroi

14 tháng 1 2018

9) n2 + 3n +3 ⋮ n +1

10) n2 + 4n + 2 ⋮ n +2

11)n2 - 2n + 3 ⋮ n - 1

12 tháng 1 2018

n2 nhé

12 tháng 1 2018

ai nhanh mk tick cho

trong hôm nay thui

22 tháng 10 2021

a: Ta có: \(3n+2⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

5 tháng 2 2022

có vẻ hơi ngắn

 

16 tháng 2 2021

a/ Bạn coi lại đề bài, 3n^2 +n^2 thì bằng 4n^2 luôn chứ ko ai cho đề bài như vậy cả

b/ \(\lim\limits\dfrac{\dfrac{n^3}{n^3}+\dfrac{3n}{n^3}+\dfrac{1}{n^3}}{-\dfrac{n^3}{n^3}+\dfrac{2n}{n^3}}=-1\)

c/ \(=\lim\limits\dfrac{-\dfrac{2n^3}{n^2}+\dfrac{3n}{n^2}+\dfrac{1}{n^2}}{-\dfrac{n^2}{n^2}+\dfrac{n}{n^2}}=\lim\limits\dfrac{-2n}{-1}=+\infty\)

d/ \(=\lim\limits\left[n\left(1+1\right)\right]=+\infty\)

e/ \(\lim\limits\left[2^n\left(\dfrac{2n}{2^n}-3+\dfrac{1}{2^n}\right)\right]=\lim\limits\left(-3.2^n\right)=-\infty\)

f/ \(=\lim\limits\dfrac{4n^2-n-4n^2}{\sqrt{4n^2-n}+2n}=\lim\limits\dfrac{-\dfrac{n}{n}}{\sqrt{\dfrac{4n^2}{n^2}-\dfrac{n}{n^2}}+\dfrac{2n}{n}}=-\dfrac{1}{2+2}=-\dfrac{1}{4}\)

g/ \(=\lim\limits\dfrac{n^2+3n-1-n^2}{\sqrt{n^2+3n-1}+n}+\lim\limits\dfrac{n^3-n^3+n}{\sqrt[3]{\left(n^3-n\right)^2}+n.\sqrt[3]{n^3-n}+n^2}\)

\(=\lim\limits\dfrac{\dfrac{3n}{n}-\dfrac{1}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{3n}{n^2}-\dfrac{1}{n^2}}+\dfrac{n}{n}}+\lim\limits\dfrac{\dfrac{n}{n^2}}{\dfrac{\sqrt[3]{\left(n^3-n\right)^2}}{n^2}+\dfrac{n\sqrt[3]{n^3-n}}{n^2}+\dfrac{n^2}{n^2}}\)

\(=\dfrac{3}{2}+0=\dfrac{3}{2}\)

16 tháng 2 2021

không thích coi rồi sao kh :D 

14 tháng 11 2021

b) \(\Rightarrow\left(n+2\right)\inƯ\left(19\right)=\left\{-19;-1;1;19\right\}\)

Do \(n\in N\)

\(\Rightarrow n\in\left\{17\right\}\)

a) Do \(n\in N\)

\(\Rightarrow n\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)

c) \(\Rightarrow\left(n+1\right)+8⋮\left(n+1\right)\)

Do \(n\in N\Rightarrow n\inƯ\left(8\right)=\left\{1;2;4;8\right\}\)

d) \(\Rightarrow3\left(n+1\right)+18⋮\left(n+1\right)\)

Do \(n\in N\Rightarrow\left(n+1\right)\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\)

\(\Rightarrow n\in\left\{0;1;2;5;8;17\right\}\)

e) \(\Rightarrow\left(n-2\right)+10⋮\left(n-2\right)\)

Do \(n\in N\Rightarrow\left(n-2\right)\inƯ\left(10\right)=\left\{-2;-1;1;2;5;10\right\}\)

\(\Rightarrow n\in\left\{0;1;3;4;7;12\right\}\)

f) \(\Rightarrow n\left(n+4\right)+11⋮\left(n+4\right)\)

Do \(n\in N\Rightarrow\left(n+4\right)\inƯ\left(11\right)=\left\{11\right\}\)

\(\Rightarrow n\in\left\{7\right\}\)

 

14 tháng 11 2021

 \(19:\left(n+2\right)\)

⇒ (n+2)∈Ư(19)=(1,19)

n+2            1               19

n               -1(L)           17(TM)

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

4 tháng 9 2023

cảm on ha

19 tháng 12 2021

a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2\right\}\)

20 tháng 12 2021

a: \(\Leftrightarrow2n-1\in\left\{-1;1;3\right\}\)

hay \(n\in\left\{0;1;2\right\}\)

20 tháng 12 2021

câu b nữa bạn