Cho tam giác ABC nội tiếp đường tròn (O;R), gọi (I,r) là đường tròn nội tiếp tam giác ABC, H là tiếp điểm của AB với (I), D là giao điểm của AI với (O), DK là đường kính của (O). gọi d là độ dài của OI. CMR:
a) tam giác AHI đồng dạng với tam giácKCD
b) DI=DB=DC
c) \(IA.ID=R^2-d^2\)
d) \(d^2=R^2-2Rr\)
O A B C I H D K E F
a) Ta thấy \(\widehat{BAD}=\widehat{CAD}\Rightarrow\widebat{BD}=\widebat{DC}\)
\(\Rightarrow\widehat{HAI}=\widehat{CKD}\) (Hai góc nội tiếp chắn hai cùng bằng nhau)
Do DK là đường kính nên \(\widehat{KCD}=90^o\)
Suy ra \(\Delta AHI\sim\Delta KCD\left(g-g\right)\)
b) Ta thấy \(\widehat{BID}=\widehat{ABI}+\widehat{BAD}\) (Tính chất góc ngoài)
Mà \(\widehat{ABI}=\widehat{IBC};\widehat{BAD}=\widehat{DBC}\) nên \(\widehat{BID}=\widehat{IBC}+\widehat{CBD}=\widehat{IBD}\)
Suy ra DB = DI
Lại có \(\widehat{BAD}=\widehat{CAD}\Rightarrow BD=DC\)
Nên DI = DB = DC
c) Kéo dài OI, cắt đường tròn (O) tại hai điểm E và F.
Ta có ngay \(\Delta EAI\sim\Delta DFI\left(g-g\right)\Rightarrow\frac{IA}{IF}=\frac{IE}{ID}\Rightarrow IA.ID=IE.IF\)
\(=\left(OE-OI\right)\left(OI+OF\right)=R^2-d^2\)
d) Ta có : \(\Delta AHI\sim\Delta KCD\left(cma\right)\Rightarrow\frac{IA}{KD}=\frac{HI}{CD}\Rightarrow IA.CD=KD.HI\)
\(\Rightarrow IA.ID=2OD.HI=2Rr\)
Từ câu c suy ra \(2Rr=R^2-d^2\Leftrightarrow d^2=R^2-2Rr\)