Giải và biện luận hệ pt\(\hept{\begin{cases}mx+2y=1\\3x+\left(m+1\right)y=-1\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cộng hai vế lại với nhau:
Ta có;
mx + 2y+ 3x + (m+1)y =0
=> (m+3)(x+y)=0
Sau đó bạn tự giải tiếp.
\(\hept{\begin{cases}mx+y=1\left(1\right)\\3x-\left(m+1\right)y=-3\left(2\right)\end{cases}}\).
Từ phương trình (1) suy ra \(y=1-mx\)
Thay vào phương trình (2),ta có: \(3x-\left(m+1\right)\left(1-mx\right)=-3\)
\(\Leftrightarrow\left(m+1\right)\left(1-mx\right)=3x+3\)
\(\Leftrightarrow-m^3x-mx+m=3x+2\)
\(\Leftrightarrow-m\left(m^2x+x-1\right)-3x=2\)
Với m = 0 phương trình có nghiệm duy nhất: \(x=-\frac{2}{3}\)
Xét tiếp tục với \(m\ne0\) nhé bạn.
Thôi chết giải nhầm.
Giải
Từ phương trình thứ nhất của hệ suy ra \(y=1-mx\)
Thay vào phương trình thức hai của hệ được: \(3x-\left(m+1\right)\left(1-mx\right)=-3\)
\(\Leftrightarrow\left(m+1\right)\left(1-mx\right)=3x+3\)
\(\Leftrightarrow m\left(1-mx\right)+1\left(1-mx\right)=3x+3\)
\(\Leftrightarrow-m^2x-mx+m=3x+2\)
Với m = 0 thì \(PT\Leftrightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)
Với \(m\ne0\) .....giải tiếp ....
^^
bạn à bạn k cho mình trước rồi mình sẽ trả lời cho.Hứa mình học CHUYÊN TOÁN mà,đừng lo nha.Hứa đó