Cho a + b + c = 2009. Chứng minh rằng:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
Do đó: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
hay \(a+b+c\ge\sqrt{ab}+\sqrt{cb}+\sqrt{ac}\)
Cho: (2010c-2011b)/2009= (2011a-2009c)/2010= (2009b-2010a)/2011
Chứng minh rằng: a/2009=b/2010=c/2011
Bạn tham khảo
http://pitago.vn/question/a-chung-minh-rang-1414-1-chia-het-cho-3bchung-minh-rang-58984.html
Trường học Toán Pitago – Hướng dẫn Giải toán – Hỏi toán - Học toán lớp 3,4,5,6,7,8,9 - Học toán trên mạng - Học toán online
Vì \(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a^{2009}}{b^{2009}}=\frac{c^{2009}}{d^{2009}}=\left(\frac{a}{b}\right)^{2009}=\frac{a^{2009}-c^{2009}}{b^{2009}-d^{2009}}\)( áp dụng tc của dãy tỉ số bằng nhau )
Vậy ...
Ta có a3 + b3 + c3 - 3abc
=[ (a+ b)3 + c3 ] - [3ab(a+b) + 3abc] = (a + b+ c)3 - 3(a + b).c(a + b + c) - 3ab.(a + b + c)
= (a + b+ c). [(a + b + c)2 - 3c(a + b) - 3ab]
= (a + b+ c).(a2 + b2 + c2 + 2ab + 2bc + 2ca - 3ac - 3bc - 3ab)
= (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
=> \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}=a+b+c=2009\)
Vậy.......
Xét tử \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3abc-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[a^2+b^2+2ab-ac-bc+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(\Rightarrow A=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}=a+b+c=2009\)
bài này cô Loan đã làm rồi , bạn vào link này tham khảo : https://olm.vn/hoi-dap/question/223905.html